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Abstract

This paper analyses learning between buyers and sellers as a new channel through which

international trade affects product introduction across different production stages within

firms. Using detailed plant level data from the Indian manufacturing census, I find that (i)

45% of multi-product plants produce at least one product pair that is connected in the Input-

Output matrix, (ii) 40% of new products added by plants every year are either upstream

or downstream to products previously produced by them, and (iii) exogenous increases in

upstream export market access cause firms to add new products that are downstream to

their previous production sets. I attribute this effect to plants learning about new products

from their downstream buyers. To analyze the effects of trade policy on firm scope I build

a dynamic quantitative general equilibrium model of Global Value Chains with knowledge

spillovers arising from buyer-seller linkages along the value chain. Potentially multi-product

and multi-stage producers in the model invest in R&D to increase their product sets and

benefit from knowledge spillovers from domestic and foreign markets. Trade policy counter-

factuals show that cross-stage product innovation decreases as the economy liberalizes due

to convergence in technology levels across countries in general equilibrium.
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1 Introduction

Global Value Chains (GVCs) bring firms from emerging economies in contact with firms at the

global frontier of knowledge by creating firm-to-firm relationships across borders. The disparity

between supplying firms in developing countries and buyers from the developed world generates

previously unavailable opportunities for suppliers to change their production processes and

outputs. These opportunities can either be demand driven or technology driven. For example,

sophisticated demand from high-income countries can induce suppliers to provide higher quality

goods.1 On the other hand, firms can benefit from the sharing of know-how and technology

transfers from other parties in the chain that improve overall efficiency of the chain.2 In fact,

the World Bank recognizes that “[the] relational nature of GVCs makes them a particularly

powerful vehicle for technology transfer along the value chain” (World Bank, 2020).

A less explored aspect of knowledge transfers along GVCs is access to new product ideas

through buyer-seller interactions. This is despite the considerable anecdotal and case study

evidence of firms from developing countries that enter GVCs as input suppliers who then have

expanded their production tasks over time.3 These examples highlight that international trade

can help in idea diffusion through firm-to-firm relationships. In this paper I study the expansion

of production stages within a firm, and propose a channel of learning to explain firms’ value chain

expansion. Specifically I ask the question: do input suppliers learn how to make downstream

products from their buyers? What is the role of international trade in providing access to

(better) downstream foreign knowledge through buyer-seller interactions?

To answer this question, I use plant-level data from the Indian manufacturing sector to

analyze the set of products produced by them over time. Using detailed product level input-

output tables, I find that adding products that are either upstream or downstream to previous

production baskets is an important dimension in which firms expand. I propose a channel of

learning between buyers and sellers as a potential mechanism for the vertical expansion of the

value chain within plants. Specifically, I explore the international dimension of learning where

Indian upstream suppliers benefit from downstream knowledge flows from their foreign buyers.

I find that Indian firms expand downstream after facing an exogenous shift to upstream foreign

demand, and find that this phenomenon is consistent with learning.

In order to understand the causes and consequences of the interaction between trade and firm

dynamics, I build a dynamic quantitative general equilibrium model of GVCs with innovating

firms. Firms in the model expand their product portfolios either vertically, by adding new

1See Verhoogen (2008), Flach (2016), Auer et al. (2018) etc for evidence on firms in developing countries
upgrading export quality in response to demand from high income consumers. For more specific examples of
demand driven changes, see Barrientos et al. (2016) for process upgrading in the African horticultural industry,
and Macchiavello and Miquel-Florensa (2019) for quality upgrading in the Colombian coffee industry.

2Smarzynska Javorcik (2004) and Alfaro-Ureña et al. (2019) study how FDI and multinational supply chains
can result in productivity improvements for suppliers. Sampson (2020) takes a theoretical approach to study
this problem. For a more specific example, see Costa and Delgado (2019) for the introduction of technology
improvements in the Mozambican cashew production by international brands.

3Bangladesh, Srilanka, and Turkey in the textile and apparel industry now produce large fractions of the value
chain after entering GVCs as cheap input suppliers (Gereffi, 1999; Fernandez-Stark et al., 2011). Korea (Samsung,
LG), Taiwan (Acer), and China (Huawei) are lead firms in the electronics industry that started off as contract
manufacturers (Sturgeon and Kawakami, 2010). China and India are playing an increasing role as independent
auto-mobile producers from only being auto parts suppliers in the past (Sturgeon and Van Biesebroeck, 2011).
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stages, or horizontally, by adding differentiated varieties within stages. Firms also benefit from

knowledge spillovers arising from buyer-seller linkages along the value chain while innovating.

The calibrated model shows that incumbent innovation is not a significant contributor to growth

or the gains from trade. However, an important dimension of within-firm product expansion is

explained by trade and international knowledge diffusion through buyer-seller linkages.

The first half of the paper establishes motivating facts about within-firm product expansion.

I start by constructing a highly detailed product-level national input-output (IO) table by

aggregating micro data at the plant level for close to 6000 products. This IO table enables

me to define a vertical relationship between any two products produced in the economy. For

example, leather is an input in the production of footballs, and hence leather is defined to be

upstream to football. At the same time, football is downstream to leather. I then define plants

as multi-stage if they produce at least one pair of products that are vertically linked in the IO

table, implying that they have integrated at least two stages of production into their production

baskets.

The first contribution of this paper is to establish two new stylized facts about manufacturing

plants in India. First, multi-stage plants dominate multi-product production. Close to 45% of

all multi-product plants are multi-stage, and 65% of all multi-product output is produced by

multi-stage plants. Zooming out, while only 18% of all plants in the data are multi-stage, they

account for more than 40% of all manufacturing output. This shows that multi-stage plants are

different from the average plant and the average multi-product plant in the data. While the

literature has established the dominace of multi-product plants in production activities, this is

one of the first papers to establish the importance of multi-stage plants.4 Second, while the

incidence of potentially integrated plants is not surprising in itself,5 a third of all new products

added by plants are vertically related to their previous production sets. Of these, more than

half are new downstream products. This establishes a quantitatively important dimension of

firm-level product expansion that hasn’t been studied before.6

The second main contribution of this paper is to provide causal evidence for knowledge

spillovers between buyers and sellers that can potentially explain the vertical nature of within-

plant product addition. In terms of a stylized example, the question I ask is this: Does an Indian

leather producer that gets increased access to foreign football knowledge start to produce foot-

balls in the future? Here, access to foreign football knowledge comes through access to foreign

football producers that buy Indian leather through export market opportunities. Sellers of a

product that experiences an exogenous increase in exposure to foreign downstream knowledge

through exports are more likely to start producing a product downstream—to their original

4Orr (2020) notes that a there is a prevalence of multi-stage producers in the Indian manufacturing sector,
but excludes these producers from his analysis.
Note that a multi-stage plant has to be multi-product plant as well. Therefore, this fact does not invalidate the
facts about multi-product plants in the literature (Bernard et al. (2010) and Boehm et al. (2020)), but brings in
a new dimension of multi-product plants that can explain their importance.

5See the vast literature on vertical integration of suppliers into production processes based on Grossman and
Hart (1986)’s incomplete-contracting and property-rights theory of firm boundaries like Antras (2003), Antràs
and Chor (2013), Nunn and Trefler (2008), Nunn and Trefler (2013), Boehm and Oberfield (2020) among others.

6To the best of my knowledge, Chor et al. (2020) is the only study that documents the vertical scope of
firms’ production expansion for China, but they use measures of upstreamness and downstreamness at highly
aggregated industry level to infer a firm’s position on the value chain. My paper on the other hand used detailed
product information and observes product addition over time.
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product—in the future. In particular, I find that a twofold increase in the measure of export

access to foreign technology increases the probability of producing a downstream product by

approximately 3.5 percentage points. My empirical specification corrects for the simultaneity

bias in estimating the impact of a plant’s export decisions and new product introduction using

import demand shocks of the importing country to instrument for India’s exports. This strategy

guarantees that any India specific variation in the determination of export market activity is

removed from the regression. This effect persists even after controlling for potentially correlated

demand shocks across upstream and downstream products.

What are the general equilibrium effects of such knowledge spillovers on welfare and growth?

How do trade policy changes affect firm level innovation decisions, and the resulting distribution

of firm types? The reduced form results indicate that a trade liberalization episode may result

in increased firm-level innovation into new stages of production. However, one cannot asses

the effect of a policy change and the resulting firm innovations on aggregate outcomes in the

economy, which in-turn affect the environment that firms operate in, purely from reduced form

evidence. In order to answer these questions I build a dynamic general equilibrium model of

GVCs with innovating firms, where international trade acts as a vehicle through which goods

and ideas flow between countries.

Production in the economy is sequential in nature with two stages of production: upstream

and downstream. As in Klette and Kortum (2004), firms are potential multi-product producers.

In my model, however, they are also multi-stage producers. Firms add products in both pro-

duction stages by investing in research and development and benefit from knowledge spillovers

from both domestic and foreign producers while innovating. Specifically, they learn from their

buyer or sellers to innovate in complementary or cross-stage production. While innovating in

the same or own stage of production, firms learn from other products being sold in their domes-

tic markets, similar to the knowledge diffusion in Buera and Oberfield (2020). Lastly, entrants

in the model also learn from products sold in the domestic market for innovating new product.

Knowledge spillovers in this model take the form of lower innovation costs for both incumbents

and entrants. This model of innovating multi-product multi-stage firms is embedded into a

dynamic selection model of growth a la Sampson (2016) and Perla and Tonetti (2014). New

product ideas developed by incumbents and entrants are drawn from the existing distribution

of ideas in the economy. With the endogenous exit of low-quality products at every instance,

growth results from better incumbent technology diffusing to new products.

The third contribution of this paper is two-fold. First, I extend the models of trade and

growth through dynamic selection, like in Sampson (2016) and Perla et al. (2019), to a setting

with asymmetric economies. Introducing international knowledge spillovers that entrants benefit

from enables me to solve for a balanced growth path equilibrium where all countries grow at

the same rate.7 Compared to these papers, knowledge spillovers across countries introduces a

new channel of dynamic gains from trade, wherein entrants in laggard economies benefit from

decreased cost of innovation due to knowledge spillovers from frontier economies. The implies

that the gains from trade liberalization also depends on the initial technology gaps between

7Without knowledge spillovers in this model of asymmetric economies, balanced growth path equilibrium
exists only in knife edge cases.
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economies; gains are large when countries are further away from each other, and lower when

countries are closer to each other in terms of technology levels. Further, similar to the results in

Buera and Oberfield (2020), dynamic gains from liberalizing a relatively closed world are higher

than liberalizing a relatively open world.

Second, a novel introduction in this model is the multiple types of innovation that allows

a firm to span different production stages. Models of multi-product firms and innovation, like

in Klette and Kortum (2004) and Akcigit and Kerr (2018), generally have product innovation

that results in adding differentiated varieties in the same product space. This model remains

tractable despite the extra dimension of incumbent innovation due to the symmetry of option

values from innovations across products in different production stages.

The consequences of introducing incumbent innovation into a model of dynamic selection

warrants discussion. Incumbent firms benefit from interacting with foreign buyers and sellers.

As mentioned above, knowledge spillovers experienced by entrant firms results in higher growth

and welfare. The effect of knowledge spillovers experienced by incumbent firms on welfare is,

however, ambiguous. Improved access to knowledge makes incumbents more valuable resulting

in more entry and an increase in static welfare. Nevertheless, the endogenous exit rate is lower

because knowledge spillovers make firms more profitable in the future, leading to low productive

firms to stay active, resulting in lower growth and lower dynamic welfare.8 Further, increase

in incumbent innovation results in in the reallocation of innovation activity from entrants to

incumbents and vice versa. This results in minimal changes to aggregate outcomes in response

to any policy change that leads to incumbent innovation changes. This adjustment of the entry

margin in response to incumbent innovation is similar to the results outlined in Atkeson and

Burstein (2010).9

While the contribution of knowledge spillovers experienced by incumbent innovation to

aggregate outcomes is not large, changes to economic conditions affect firm-level dynamics

through adjustments of knowledge spillovers. Calibrating the model to India and an aggregate

for the rest of the world, I find that cross-stage spillovers experienced through buyer-seller

interactions on the international market are important for explaining the variation in firm type

distributions. Counterfactual analyses in this paper are comparisons of balanced growth path

equilibria across policies. Trade policy counterfactuals show that cross-stage innovation rate

by incumbents in India increases in response to a protectionist policy, while they decrease in

response to trade liberalization. This surprising outcome results from technologies between

the two countries diverging in response to a tariff increase, which results in higher knowledge

spillovers experienced by incumbents. On the other hand, trade liberalization results in a

8In models with endogenous exit, wherein firms have to pay a fixed operating cost that leads to low pro-
ductive/quality firms from exiting the market, introducing incumbent innovation increases the option value of
staying active in the market. Therefore, products that would not have been profitable enough to enter, now
have an incentive to stay active in the hopes of gaining a new product in the future through innovation. This
interaction of incumbent innovation and endogenous exit resulting in lower average incumbent productivity is
similar to the model in Acemoglu et al. (2018).

9Atkeson and Burstein (2010) studies a model of trade and its impact on firm level entry, exit and process
innovation decisions. They find that any changes to welfare resulting from incumbent innovation in response to a
trade policy change is offset by the entry margin with product innovation. In my model, any changes to welfare
due to incumbent product innovation is mostly offset by entrant firms adjusting their rate of innovation so that
in a balanced growth path the adjustment of the equilibrium mass of firms is minimal.
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convergence of technology levels across the two countries, so there is less relative knowledge to

learn for Indian firms.

Literature Review This paper relates to multiple strands of literature. Firstly, it contributes

to the space of international trade and firm level innovation. My paper establishes a link

between exporting and new product introduction within plants. In this regard, I contribute

to the literature on exporting and innovation like Lileeva and Trefler (2010), Aw et al. (2011),

Bustos (2011), and Atkin et al. (2017). Atkin et al. (2017) is the closest to my paper as it focuses

on exporters learning from interactions with their buyers in the foreign market, however the

the learning process is about improving products already being produced by the exporters. In

terms of international trade and product introduction, my paper relates to papers like Goldberg

et al. (2010) and Bas and Paunov (2018). However, these papers study access to cheaper or

higher quality intermediate inputs as a mechanism for new product introduction. My paper on

the other hand looks at how export market access leads to new product introduction. The other

focus of the literature on international trade and firm-level innovation has been to study the

changes in firm level incentives and costs to innovate in response to a trade shock. Papers that

have analyzed the impact of import competition on firm-level innovation activity have found

mixed evidence.10 My paper contributes to this literature by identifying a new channel through

which international trade can affect firm level product introduction through knowledge transfers

along the value chain.

The second set of studies my paper is related is the multi-product firms literature. Papers

such as Bernard et al. (2010), Eckel and Neary (2010), Bernard et al. (2019), Boehm et al.

(2019), and Ding (2019) have looked at the incidence of multi-product firms from different

lenses. A main argument in the multi-product firms literature is that firm produce multiple

product due to input complementarities. I move away from this argument, and find evidence

for a new dimension of heterogeneity. I find that plants produce multiple products that are

vertically linked on the value chain. Reasons of contractual frictions for vertically integrating

suppliers like in Antràs and Chor (2013) and Boehm and Oberfield (2020) is not sufficient to

explain the incidence of plants that add products downstream. Alfaro et al. (2019) also use

a property-right model of firm boundary decisions to explain expansion of production stages

both upstream and downstream, while Chor et al. (2020) finds that Chinese firms span more

stages of production in both directions as they grow more productive and experienced. To my

knowledge, I am the first to document the systematic relationship between accessing export

markets and increasing production states downstream.

My paper also contributes to the growing literature on knowledge diffusion through inter-

national trade, and the dynamic gains from trade. This literature has built on the seminal

works of Jovanovic and Rob (1989), Grossman and Helpman (1991), Coe and Helpman (1995),

and Kortum (1997) who model innovation and diffusion as a stochastic process. My model

is closest to the ones in Sampson (2016) and Perla et al. (2019). However there are two key

distinctions from these papers. I extend the model of dynamic selection to incorporate asym-

metric economies and introduce knowledge spillovers across the economies to solve for balanced

10See Pavcnik (2002), Trefler (2004), Amiti and Konings (2007), Topalova and Khandelwal (2011), Bloom
et al. (2016), Medina (2020) among other. Shu and Steinwender (2019) summarizes the literature.
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growth path equilibria. Other papers that study knowledge diffusion through the lens of inter-

national trade are the models developed by Alvarez et al. (2008), Alvarez et al. (2013), Buera

and Oberfield (2020), and Cai et al. (2018). The other key difference in my model is incumbent

innovation, not just in one product space, but in multiple product spaces. This allows me to

study firm-level dynamics in response to policy shocks.

2 Empirical Evidence

In this section, I document a set of new facts about the product mix of multi-product plants in

India. I show that plants produce products that are vertically linked in the production process,

and that a disproportionately large share of new products added by plants are either upstream

or downstream to older product sets. A key element in doing this exercise is the construction

a highly detailed product-level input-output table using micro firm-level production data. I

then propose a channel of learning between buyers and sellers which can explain the vertical

nature of new product addition. In the second half of the empirical analysis I provide causal

evidence on international knowledge spillovers along the value chain. My identification strategy

depends on variation in product scope of firms across time, and plausibly exogenous variation

in export market opportunities. I show that sellers of a specific product that experience greater

export exposure in a period are more likely to produce a product that is downstream to the

said product in future periods. This effect persists even after controlling for correlated demand

shocks across the two products. I attribute this effect to knowledge spillovers wherein Indian

plants benefit from interacting with foreign producers of downstream products. I first start

by describing my dataset, and some stylized facts about Indian manufacturing firms. I then

describe my empirical strategy, explain the variable construction, and finally discuss the results.

2.1 Data

The primary dataset I use comes from the Indian Annual Survey of Industries (ASI henceforth)

for the years 2001 to 2009. The ASI extends to the entire country, and covers all registered

factories11 employing 10 or more workers using power, and those employing 20 or more workers

without using power. All plants employing 100 or more workers are sampled every year called

census plants, while the rest are sampled randomly.12 I construct an unbalanced panel spanning

the years 2001-2009.

I chose to use this specific dataset to study the product mix of plants and the role of

technology diffusion in determining the product mix for multiple reasons. First, a developing

country such as India provides an ideal setting to study learning along the value chain. India

plays an important role in international markets, specially as an intermediate goods supplier.

The share of India’s exports that comprise of “intermediate goods” was close to 35% in 2018,

where as the world average was 20%.13 While knowledge diffusion can flow either way, a

11Factories in this dataset correspond to plants or establishments, and not firms. See appendix A.1 for more
details.

12The 100 employee threshold applies to most states with a few exceptions. For more details see: http:

//www.csoisw.gov.in/CMS/UploadedFiles/ASIWrite_Up_2017_2018.pdf
13China’s intermediate good share in total exports is 22% and the United State’s is 17%. Source: World Trade
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developing country by being farther away from the technological frontier has more to gain

from international knowledge spillovers. Second, a unique feature of the ASI is that it contains

detailed information about all products produced by plants in a given year, which are classified

according to a national product classification. There are more than 6000 five digit product

codes defined by the classification, out of which 5755 products are listed as outputs produced

by firms in my sample period. More importantly, the data set also lists the inputs used by firms

in the same product classification. This classification is unique for the level of detail in product

definitions, and allows one to construct an Input-Output (IO henceforth) table at a detailed

product level, and thereby define the vertical relationship between any two products. Third,

Indian firms exhibit a lot of product switching behavior, and the ASI allows one to keep track

of products produced in the past, present, and future. This variation is especially useful for the

empirical exercise I consider.

Before I can document features of the product sets produced by Indian plants, I need to

define vertical relationships between product pairs. To that end, I construct a national input

output database that will enable me to establish if two products are related vertically.

2.2 Vertical Relationship between Product Pairs

A key element in this empirical analysis is determining the relationship between two products:

whether one is upstream to the other, or downstream to the other, or are unrelated to each

other. I do this for the set of products produced by Indian firms by constructing a national IO

table. I then use the elements in the matrix to determine the vertical relationship between any

two products. The IO table is constructed using information on the inputs used and outputs

produced by only the single product firms, which make up about 60% of all firms in my sample.14

I use only single product firms as the dataset reports total inputs used by the plant, and not

inputs used per product line. Using only single-product plants ensures that inputs are not

wrongly attributed to an output. I then aggregate up all firms’ input and output information

to construct one national IO table that contains more than 33 million (57552) product pairs,

out of which only 72,292 elements contain positive values.15

For every product pair from the IO table, (ω, ω′), I can now observe the amount of material

flow between them. Let mωω′ be the value of ω used as an input into the production of ω′.

Then, the placement of ω on the value chain with respect to ω′ is defined as:

VR(ω, ω′) =



Upstream, U if mωω′ > 0 & mω′ω = 0

Downstream, D if mωω′ = 0 & mω′ω > 0

Both, B if mωω′ > 0 & mω′ω > 0

None, N if mωω′ = 0 & mω′ω = 0

(1)

Integrated Solutions.
14I use data from the years 2003-2009 to construct the IO table. I drop the first two years of my sample as

the maximum number of inputs required by the ASI to be declared changed from 5 to 10 in 2003. Hence, I use
the years for which the most consistent input data is available.

15To avoid picking up unrelated products as vertically linked arising due to errors in data filing, I use only
those links that make up at least 1% of the total input supply of an output product. Doing this cuts the number
of positive linkages by close to 75%.
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Table 1: Vertical Relationship: Examples

ω ω′ VR(ω, ω′)

Tanned Leather (43301) Foot Ball (93134) Upstream

Desk with Seat (51208) Plywood Board (51275) Downstream

Aromatic Chemicals (36102) Perfume based Materials (36146) Both

Iron/Steel Wire Nets (71575) Bamboo Pulp (54101) None

Table 2: Vertical Relationship: Classification of Product Pairs

Category Number Share (%)

Upstream 35,770 0.108

Downstream 35,770 0.108

Both 752 0.002

None 33,084,451 99.78

Total 33,120,025 100

where VR(·) is the vertical relationship function. Note that by this definition, if ω is upstream

to ω′, then ω′ is downstream to ω. Table 1 gives some illustrative examples of the different

types of relationships between product-pairs. Table 2 gives details on the number of product

pairs in the IO table and the shares of the different vertical relationship categories they fall

into. A very small fraction of all the potential product linkages are active in the IO matrix. For

an average product in the IO table, the number of products that are vertically linked to it is a

little over 12 out of a total potential of 5754 products. That is, the average product is either

an input to, or an output of, about 0.2% of all products.

There are two aspects of this definition of vertical linkages worth discussing. The first one

pertains to the fact that this construction picks up only direct inputs in the production of an

output. This means that products that are upstream or downstream through multiple steps of

the production value chain are not considered to be “vertically” linked. As Boehm and Oberfield

(2020) document, single-product plants in India use a diverse set of recipes to produce a given

product, and these recipes vary in terms of how many production stages are integrated within

the plant. To the extent that recipes used by single-product plants captures a large part of the

value chain for products, my definition of vertical relationship between product pairs will pick

up even products separated by multiple stages of production in between.

The second aspect relates to my application of these product relationships to products pro-

duced by multi-product plants. It is possible that multi-product plants use different production

technologies and recipes over the ones used by single-product plants. If this were the case,

then my definition picks up far fewer relationships than that exist in reality. This would bias

the conclusions from my empirical analysis towards finding no impact of trade on value chain

learning.
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Table 3: Plant Types in Indian Manufacturing

Plant Type Statistic 2001 2005 2009 2001-09

All
Observations 27710 36042 34787 298545

Avg. Products 1.85 1.78 1.73 1.79

(a) Within All Plants

Single-Product

Plant Share 0.57 0.60 0.62 0.60

Output Share 0.29 0.27 0.29 0.29

Avg. Products 1 1 1 1

Multi-Product

Plant Share 0.43 0.40 0.38 0.40

Output Share 0.71 0.73 0.71 0.71

Avg. Products 3.00 2.96 2.95 2.98

(b) Within Multi-Product Plants

Single-Stage

Plant Share 0.56 0.54 0.57 0.55

Output Share 0.32 0.39 0.45 0.38

Avg. Products 2.63 2.58 2.59 2.60

Multi-Stage

Plant Share 0.44 0.46 0.43 0.45

Output Share 0.68 0.61 0.55 0.62

Avg. Products 3.45 3.39 3.41 3.44

Notes: This table summarizes the heterogeneity in the product mix of Indian manufacturing
plants. Panel (a) classifies all plants into either-product or multi-product based on the number
of products produced. Panel (b) further classifies all multi-product plants into either single-stage
or multi-stage producers based on the type of products produced. Rows labeled “Plant Share”
and “Output Share” report the share of plant observations and the share of output respectively
of the corresponding plant type out of all observations in panel (a), and out of multi-product
observations in panel (b). Rows labelled “Avg. Products” report the average number of products
within each plant type.

2.3 Stylized Facts about Indian Manufacturing Plants

Fact I: Multi-product plants are also multi-stage plants

Table 3 lists some summary statistics on the types of plants in the ASI. My unbalanced panel

sample consists of 298,545 plant-year observations. The purpose of this table is to show variation

across plants in India in terms of number of products and types of products produced. First,

the average Indian manufacturing plant produces 1.8 products per year, with the number of

products ranging from 1 to 22. Based on this observation, I first classify plants as either single-

product or multi-product. While multi-product plants make up for only 40% of plant-year

observations, they are responsible for more than 70% of total output in the economy.16

The second dimension of heterogeneity I am interested in is the type of products being

produced by these plants. Specifically, I look for whether plants produce products that are linked

via the IO table, or in other words, linked via the value chain. Based on this I classify plants

16The dominance of multi-product firms in production has been documented by other papers: Bernard et al.
(2010) for the US, Goldberg et al. (2010) and Boehm et al. (2020) for India.
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Table 4: Plant Type Distribution

Plant Type Single-Product
Multi-Product Multi-Product

Single-Stage Multi-Stage

Plant Share 0.60 0.22 0.18

Output Share 0.29 0.28 0.43

Notes: This table lists the distribution of plant types, and their corresponding share of total
output, for all plant-year observations between 2001-2009 in my sample.

as single-stage or multi-stage producers. A plant is multi-stage if it produces at least one pair

of products that has a non-zero element in the IO table. This implies the plant has integrated

multiple stages of a value chain within itself. Note that, by this definition single product plants

are never classified as integrated. This definition of vertical integration is different from the

one used in Boehm and Oberfield (2020), where integration is a continuous measure defined for

only single product firms.17 In contrast, my classification of vertical integration can only be

applied to multi-product plants. This classification will be an underestimate of the true share

of multi-stage producers in the sample.

Roughly 18% of all plants in my dataset and 45% of all multi-product plants are classified as

multi-stage producers. More surprisingly, multi-stage producers dominate production activity

even when compared to other multi-product plants. They account for more than 45% of all

production activity, and 65% of all multi-product output specifically. This seems to imply that

multi-stage producers are different from an average multi-product producer, and underlines

the importance of studying these plants in more detail. This feature of multi-product plants

is less explored in the literature, and contributes to a growing body of literature that studies

explanations for the incidence of multi-product plants.18 A closely related paper is Boehm et al.

(2019), which shows that multi-product plants in India produce products belonging to industries

that share common intermediate inputs using the same dataset.19 I provide a complementary

explanation for the incidence of multi-product plants to the one provided in their paper.

Based on these dimensions of heterogeneity I classify all plants into three kinds: single-

product, multi-product single-stage, and multi-product multi-stage. Only multi-product plants

can be classified as a multi-stage producer as well. Table 4 summarizes these categories.

Fact II: New products are vertically linked to older product sets within plants

A key observation from the dataset is that a plant’s type is not constant over time. Plants switch

between being single-product and multi-product, and being single-stage and multi-stage. The

statistics presented in this section are for the sub-sample of plants that appear in the dataset

at least two years in a row, which is around 127,600 plants. Table 5 shows the transition

17Boehm and Oberfield (2020) constructs a measure of vertical distance between the inputs used and outputs
produced by a plant. Vertical distance is intended to capture the typical number of steps between the use of a
product, ω′, and the production of another product, ω. Multi- product plants are excluded in their analysis as
they cannot observe input use by each production line.

18Other papers have looked at multi product plants from different lenses: Eckel and Neary (2010), Bernard
et al. (2019), De Loecker (2013), Nocke and Yeaple (2014).

19Industries in Boehm et al. (2019) are defined as the 3-digit aggregates of the 5-digit product codes.

10



Table 5: Firm Type Transition

year (t+ 1)

Single-Product
Multi-Product Multi-Product

Single-Stage Multi-Stage

ye
a
r
t

Single-Product 0.89 0.07 0.04

Multi-Product
0.17 0.63 0.20

Single-Stage

Multi-Product
0.11 0.22 0.67

Multi-Stage

Notes: This matrix represents the transition of firm types from one year to the next. Each row sums to 1,
and each element in a given row represents a share.

Table 6: Types of New Products in year (t+ 1)

VR 2001 2005 2008 2001-08

Upstream 0.15 0.15 0.13 0.14

Downstream 0.16 0.17 0.16 0.17

Both 0.09 0.08 0.08 0.09

None 0.60 0.60 0.62 0.60

Total 1 1 1 1

Notes: This table summarizes the set of new products produced by plants
in a year and the relationship to older product sets within the plant. New
product added in the next year for 2009 cannot be calculated as it is the
terminal panel year.

matrix of firm types from one year to the next. Product adding makes plants transition into

both multi-product plants and also multi-stage plants at comparable rates. Further, product

dropping leads to plants losing their multi-product or multi-stage status.

A more important characteristic of product adding behaviour of plants is summarized in

table 6. A disproportionate share of new products added by plants each year is vertically

related to plants’ previously produced product sets. For example, a plant producing tanned

leather in one year may go on to produce footballs in the next, or a plant producing desks may

start producing plywood in-house. Recall that an average product in the IO matrix is vertically

related to only 0.2% of all products in the economy. However, close to 40% of new products

added by plants at time t+ 1 are either upstream and/or downstream to product sets at time

t. This implies that new products are not randomly chosen by these plants, but are chosen

because they are linked via production processes. This is a key feature of the data that will

shape the model in the next section.

2.4 Identifying Knowledge Spillovers Along the Value Chain

What could be driving this vertical nature of new product addition? I propose that a potential

mechanism for adding new vertically related products is through learning about these products

from their buyers and sellers. In the following empirical exercises, I attempt to tease out the
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effect of knowledge spillovers on Indian manufacturing plants’ product decisions. I focus on

a specific form of knowledge spillovers: input suppliers learning about downstream products

from interactions with their buyers.20 I hypothesize that buyer-seller interactions can lead to

knowledge transfers. For example, the producer may share the design of his product with his

input supplier in the process of providing the specifications for the input he requires. Or, the

supplier learns how to organize his workers to incorporate a new stage of production. Knowledge

transfer could also happen when employees from the producer’s firm moves to the supplier’s

firm. While I will not be taking a stance on the exact nature of knowledge spillovers, the

regression specification lets me identify spillovers in an agnostic way.

My identification strategy is based on exogenous shocks to an Indian supplier’s export market

access. The export market access variation is exogenous to Indian specific trends, and captures

changes in foreign countries’ import demand. I show that increase in export market access for

firms in India leads to an increase in the likelihood of firms producing products downstream

to their present product set in the future. This can happen for two reasons: new exporters

accessing new knowledge outside of the country, or exporters getting access to new technology

in the downstream industry in these export markets.

2.4.1 Regression Specification

The following is the baseline specification to identify the effect of increased export exposure

(ExpDω,t) of product ω on the likelihood that plant j producing ω introduces a downstream

product, D(ω), in the future:

1
D
j,ω,t+s = α0 + α1 log(ExpDω,t) + Xj,ω,tα+ δt + δj,ω + εj,ω,t+s (2)

where 1Dj,ω,t+s is the main variable of interest capturing new downstream production, and Xj,ω,t

are a set of firm-year and firm-product-year level controls, and δt and δj,ω are year and firm-

product fixed effects.

Downstream Upgrading I use the vertical relationship definition described in equation 1

to identify the set of downstream products to any product ω as:

D(ω) =
{
ω′ : VR(ω′, ω) = D

}
(3)

When constructing my dependent variables, I use only those products that are new in a firm’s

product set at time t+ s relative time t. Formally, let Ωj,t be the set of products produced at

time t by plant j. The set of new products at time t+s would be: Ωnew
j,t+s = Ωj,t+s\{Ωj,t+s∩Ωj,t}.

1
D
j,ω,t+s =

1 if
∣∣∣Ωnew

j,t+s ∩D(ω)
∣∣∣ ≥ 1

0 if
∣∣∣Ωnew

j,t+s ∩D(ω)
∣∣∣ = 0

(4)

where |A| is the cardinality of set A. The main variable of interest captures whether a firm j

produces at least one new product at time t + s that is downstream to a product ω from its

20Note that buyers of an input are producers of products downstream to that input.
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time t production set.

Export Exposure The independent variable is constructed to capture exposure to foreign

downstream technology that Indian firms have through exports. Export exposure of a product

ω at t is the weighted average of India’s product level exports to different countries. The weights

are constructed to capture how good importing countries are in producing products downstream

to product ω. The weight for each country i, wi
D(ω),t, is measured by the relative per-capita

exports of downstream products to the world by country i. The assumption here is that if

country i is a large supplier of downstream products, after controlling for the size of country i,

then it is a good producer of downstream products. This is meant to capture the variation that

I am interested in, namely knowledge of downstream production, and the potential for Indian

firms to learn from this knowledge. The export exposure measure is constructed as follows:

ExpDω,t =
∑
i

XInd,i
ω,t w

i
D(ω),t (5)

w
i
D(ω),t =

Xi,W ld
D(ω),t

Ljt

/∑
j

Xj,Wld
D(ω),t

Ljt

where XInd,i
ω,t is the value of Indian exports of product ω to country i in t, and XWld,i

D(ω),t is the

value of exports from country i to the rest of the world of all the products that are downstream

to ω. Note that this variable only has product and time level variation, and not firm level.

Therefore, all firms in the regression receive the same shock. My coefficient of interest, α1, is

to be interpreted as the average country level effect.

There are two sources of variation in the above measure of export exposure: variation of

Indian exports across different countries, and the variation in foreign countries downstream

technology. Therefore, India’s access to a foreign country’s downstream knowledge increases

for two reasons: Indian exports to said foreign country increases, or the foreign country’s

downstream knowledge increases.

2.4.2 Threats to Identification

I hypothesize that a positive value of α1 in my estimating equation 2 would mean that there

are knowledge spillovers across the stages of production. However, there are some concerns of

endogeneity that have to be addressed. I discuss some threats to identification in my regression

specification, and how I solve for them below.

Common Supply Shocks across Upstream and Downstream Products in India A

concern may be that Indian firms are getting better at producing certain value chains, and

exports increase due to this supply shock within India. This can lead to firms in India producing

new downstream products, while simultaneously exporting upstream product from the same

value chain. For example, Indian firms learn a new way to make both tanned leather and

leather footwear more efficiently. This would make the OLS estimate upward biased. In order to

correct for this, I use a import demand instrument, that would exclude India specific technology
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or policy shocks over time, and would capture export variation that is foreign demand driven.

I describe this instrument in the next section.

Supply Shocks to Upstream Products only in India Another endogeneity concern is

when supply shocks to products increases exports, which makes firms reluctant to switch into

other products due to increased profits. For example, if Indian leather producers increase their

efficiency and do not want to switch their production into footwear. This is especially a concern

as the data shows that if plants start producing downstream products, it usually happens at the

expense of their supply of upstream products. This would bias the OLS estimates downward.

Table 7 shows this relationship where I run the following regression for different lead periods:

1
D
j,ω,t+s = b0 + b11

S
j,ω,t+s + Xj,ω,tβ + δt + δj,ω + εj,ω,t+s (6)

where 1
S
j,ω,t+s is an indicator for whether product ω that was produced in period t is still

produced in period t + s. This regression captures the correlation between the probability of

producing new products downstream to a given product in a firm’s product set, and the proba-

bility of continued production of the said product in the future. This correlation is consistently

negative, suggesting that production of new downstream products comes at the expense of

incumbent products.

The import demand instrument described to correct for the first endogeneity issue is also

used to correct for this bias. My identification assumption rests on the argument that foreign

import demand shocks for a specific product should be exogenous to firm level production

decisions.

World Demand shocks for Downstream Products Imagine a scenario where an increase

in exports of a particular product ω is driven by increase in world demand for products down-

stream, D(ω). This would lead to countries demanding more of inputs used to produce the

set of products in D(ω), one of which is product ω. So, any correlation we may find could be

a result of Indian firms reacting to this world demand for downstream products. The import

demand IV would not be able to correct for this bias, as the bias is in fact exacerbated by the

use of import demand shocks. This would lead to a positive bias in OLS. To control for any

such downstream demand shocks, I construct a variable that captures world demand shocks to

downstream products that are relevant to India. It is as follows:

WorldDω,t =
∑

ω′∈D(ω)

γω′,ω
∑
i

sInd,iω′,0 X−Ind,iω′,t (7)

where X−Ind,iω′,t is country i’s imports of product ω′ from all countries except India, sInd,iω′,0 is

India’s share in country i’s imports of product ω′ in a pre-sample period (2000), and γω′,ω is

the share of product ω′ in total intermediate input demand faced by product ω. This variable

captures world demand trends of downstream products that potentially shift India’s demand

curve for product ω.

14



Table 7: Endogeneity Issue

Produce Same Product, 1Sj,ω,t+s

t+ 1 t+ 2 t+ 3 t+ 4

(1) (2) (3) (4)

1
D
j,ω,t+1 -0.277***

(0.006)

1
D
j,ω,t+2 -0.226***

(0.0006)

1
D
j,ω,t+3 -0.209***

(0.007)

1
D
j,ω,t+4 -0.202

(0.008)

Observations 150,716 118,530 90,418 68,759

R-Squared 0.441 0.549 0.604 0.631

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-
digit product code. * Significant at 10%, ** Significant at 5%, *** Significant
at 1%. All columns have the following controls: plant-product revenue in
each year, total number of products produced by the plant in each year, year
fixed effects, and plant-product fixed effects. All columns report ordinary
least square (OLS) estimates. The independent variable is an indicator for
a plant producing a new downstream product to its current product in a
future year, t+ s. These results show that the probability that a plant keeps
producing its older product decreases with the probability of it producing a
new product in the future. This can potentially bias the OLS results in the
baseline specification downward.

2.4.3 Instrumental Variable Strategy

My instrumental variable strategy involves using shocks to a country’s demand for a certain

product to explain India’s exports of said product to that country. Specifically I instrument

country i’s imports from India with its imports from the world except India. The variation

captured here would potentially exclude Indian supply factors driving Indian exports. My in-

strument is then constructed as a weighted average of every country’s import demand, weighted

by the country’s downstream market size at a pre-sample period:

IVω,t =
∑
i

X−Ind,iω,t w
i
D(ω),0 (8)

2.5 Results

Table 8 reports the baseline results from OLS and IV strategies for lead year s = 1, i.e. I

look for the impact of export exposure on downstream upgrading one year in the future. All

regressions have year and plant-product fixed effects. The inclusion of plant-product fixed effects

controls for any plant specific trends (that will affect all the products produced by the plant)

and product level trends in the economy. The estimates should thus be interpreted as within
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plant, across product effects. All regressions are also clustered at the 3-digit industry level to

capture correlated shocks across different industry markets.

Column (1) reports the OLS results which is close to zero and insignificant. Column (2)

reports estimates from the IV strategy. As described in the endogeneity section, ex-ante the

OLS estimate could be upward or downward biased. The positive and significant IV estimate

in column (2) suggests that the negative bias is stronger in OLS. This is potentially a result of

firm inertia in switching products when hit with a supply shock as discussed in the edogeneity

section. The results show that a doubling of exposure to foreign technology through exogeneous

shocks to exports for a product increases a plant’s likelihood of producing a new downstream

product by close to 3.5 percentage points in the next year.

In column (3) I correct for the third simultaneity bias, world downstream demand trends, by

including the world demand regressor WorldDω,t. This regressor captures any demand trends that

Indian firms face in the downstream product market. As expected, the coefficient of interest

is muted by the inclusion of this regressor, but not enough to cancel out the effect of export

exposure. These results suggest that Indian firms when faced with an exogenous shock to their

export market access learn from their buyers, which is then manifested as changes to their

production decisions.

Table 9 reports the instrumental strategy results for different lead periods. Since, my sample

is an unbalanced panel of plants, it is hard to compare results across the different columns. But,

the main takeaway from these regressions is that the knowledge spillover results in the last table

is not just spurious correlation from one year to the next, but is a consistent pattern over time.

Firms learn about downstream products when given an opportunity, that they then may convert

to production sometime in the future.

2.6 Placebo Tests

One may be concerned that the downstream upgrading results are not due to knowledge

spillovers (specific to downstream products), but some other firm level effect of exporting that

manifests as new products being produced. Improved export market access can lead to changes

in firm outcomes, that can potentially make the firm more likely to produce new products. To

exclude such concerns, I conduct placebo tests by re-running the baseline IV regression using

other dependent variables. I replace new downstream products with new upstream products and

new other unrelated products in my main regression specification 2. Table 10 reports the results

for these regressions, where 1Uω,j,t+s and 1
O
ω,j,t+s are the number of new upstream products and

new other products produced by the plant at time t+ s.

The results of the placebo tests are reassuring, and provide more support to the argument

that firms produce new downstream products due to knowledge spillovers. Columns (1)-(3)

reports the placebo regression results for new upstream products for different lead years, and

all estimates are zero. Similarly, Columns (4)-(6) reports the same for new unrelated products,

with imprecise estimates. Export exposure for a given product does not affect the likelihood of

a firm producing new products other than those flagged as downstream to the said product.
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Table 8: Knowledge Spillovers: Baseline

(a) OLS, Second Stage (IV), and Reduced Form Results

New Downstream Production, 1Dj,ω,t+1

OLS IV IV RF RF

(1) (2) (3) (4) (5)

log(ExpDω,t) 0.002 0.049** 0.048** 0.025*** 0.026***

(0.003) (0.021) (0.019) (0.008) (0.009)

log(WorldDω,t) 0.002 -0.007

(0.008) (0.007)

Observations 127,059 127,059 127,059 127,059 127,059

R-Squared 0.421 - - 0.421 0.421

F-Stat - 21.988 22.044 - -

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-digit
product code. * Significant at 10%, ** Significant at 5%, *** Significant at 1%. All
columns have the following controls: plant-product revenue in each year, total number
of products produced by the plant in each year, year fixed effects, and plant-product
fixed effects. Column (1) reports ordinary least squares (OLS) estimates, columns (2)-(3)
reports second stage estimates from instrumental variable (IV) strategy, and columns (4)-
(5) reports the reduced form (RF) estimates. Indian export exposure measure, ExpDω,t,

is instrumented by the import demand IV defined in equation 8, IVDω,t.

(b) First Stage (IV) Results

Export Exposure, log(ExpDω,t)

(1) (2)

log(IVD
ω,t) 0.506*** 0.545***

(0.108) (0.116)

log(WorldDω,t) -0.193

(0.189)

Observation 127,059 127,059

R-Squared 0.964 0.964
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Table 9: Knowledge Spillovers: New Downstream Products over Time

New Downstream Production, 1Dj,ω,t+s

t+ 1 t+ 2 t+ 3 t+ 4

(1) (2) (3) (4)

log(ExpDω,t) 0.048** 0.057*** 0.078*** 0.070*

(0.019) (0.016) (0.025) (0.041)

log(WorldDω,t) 0.002 0.019 0.049* 0.068**

(0.008) (0.013) (0.027) (0.029)

Observations 127,059 100,320 76,939 58,637

F-Stat 22.044 30.565 27.509 14.104

Notes: Standard errors are reported in parenthesis, and are clustered at the
3-digit product code. * Significant at 10%, ** Significant at 5%, *** Signif-
icant at 1%. All columns have the following controls: plant-product revenue
in each year, total number of products produced by the plant in each year,
year fixed effects, and plant-product fixed effects. All columns report second
stage estimates from instrumental variable (IV) strategy. Indian export ex-
posure measure, ExpDω,t, is instrumented by the import demand IV defined

in equation 8, IVDω,t.

Table 10: Knowledge Spillovers: Placebo Tests

New Upstream Products, 1Uj,ω,t+s New Unrelated Products, 1Oj,ω,t+s

(t+1) (t+2) (t+3) (t+1) (t+2) (t+3)

(1) (2) (3) (4) (5) (6)

log(ExpDω,t) 0.004 -0.010 -0.023* -0.024 -0.005 -0.026

(0.017) (0.017) (0.013) (0.024) (0.020) (0.019)

log(WorldDω,t) 0.008 0.010 -0.002 -0.007 -0.013 0.001

(0.009) (0.011) (0.010) (0.013) (0.015) (0.017)

Observations 127,059 100,320 76,939 127,059 100,320 76,939

F-Stat 22.044 30.565 27.509 22.044 30.565 27.509

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-digit product code. *
Significant at 10%, ** Significant at 5%, *** Significant at 1%. All columns have the following controls:
plant-product revenue in each year, total number of products produced by the plant in each year, year
fixed effects, and plant-product fixed effects. All columns report second stage estimates from instrumental
variable (IV) strategy. The dependent variable in columns (1)-(3) is an indicator for the plant producing
a product upstream to it’s current product, and the dependent variable in columns (4)-(6) is an indicator
for the plant producing unrelated products in the IO table to its current product in a future year t+ s.
Indian export exposure measure, ExpDω,t, is instrumented by the import demand IV defined in equation

8, IVDω,t.
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Taking Stock In the previous section, I have shown some new stylized fact about Indian

manufacturing plants. Multi-product plants in India are also multi-stage producers, and multi-

stage production is a result of product adding over time. A disproportionate share of new

products added by plants over time are vertically linked to previous production sets within

plants. This results in previously single-stage producers to become multi-stage producers over

time. I propose and explore a potential channel for why plants add vertically related products:

learning between buyers and seller. I find evidence for such a mechanism whereby Indian plants

are more likely to add downstream products when they are exposed to foreign downstream

technology.

In order to asses the importance of product addition and international knowledge spillovers

on aggregate outcomes, I build a dynamic general equilibrium model with innovating firms. A

GE model is also particularly useful to study changes in firm dynamics in response to a trade

policy change: Are there more of less firm innovating? Are there more or less multi-product

and multi-stage producers? The model thus incorporates features of firms and firm dynamics

documented in the empirical section. I first describe the structure of the economy, and then

define firms and firm dynamics arising from innovation, and finally derive results for growth

and welfare.

3 Model Setup

In this section, I develop a quantitative trade model with heterogeneous firms engaged in a

sequential production process with dynamic idea diffusion. Consider a world made up of N

asymmetric countries indexed by n, or l, and J industries indexed by j or k. The set of

countries and industries will be denoted by N and J going forward. Each country is endowed

with Ln amount of labor that is supplied inelastically by a representative household, and is the

only factor of production. A non-traded final good, used for consumption and as material input

(for roundabout production), is a composite of intermediate varieties sourced from all industries

and all countries. Intermediate variety production involves two sequential stages: an upstream

stage and a downstream stage, indexed by s ∈ {u, d}. Labor is mobile across all industry-stages

of production but not across countries, and time is continuous.

3.1 Preferences

Each economy is populated by a representative household which seeks to maximize the following

intertemporal utility function:

Un =

∫ ∞
0

e−ρtlog(Cnt)dt (9)

where Cit represents consumption of final good at time t, and ρ > 0 is the discount rate. The

budget constraint of the representative household is given by:

rntAnt + wntLn = PntCnt + Ȧnt (10)
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where rnt is the return to asset holdings of the household, wnt is the equilibrium wage received

by workers, Pnt is the price of the final good, and Ant is assets owned by the household at time t.

Households also own all firms in the country, therefore the value of assets in each period should

equal the totality of firm values at every time. Utility maximization implies the following Euler

equation:
Ċnt
Cnt

= rnt − ρ−
Ṗnt
Pnt

(11)

The rest of the model is discussed in two main parts: production structure and innovation

structure of the economy.

3.2 Production

Figure 1 illustrates the production structure of the economy. Each industry j has two stages of

production indexed by s, upstream and downstream. Output from the upstream stage is used

exclusively in the production of the downstream stage. Output from the downstream stage is

then used in the production of the final good, which is used for consumption and as an input

into both upstream and downstream stages. The details of the production technology at every

point is described in detail below.

3.2.1 Final Good Production

A perfectly competitive sector produces a non-traded final good that is used for consumption

and as a material input for production in each country. The final good is produced using a

Cobb-Douglas aggregate of output from all industries as:

Ynt =
∏
j∈J

(
Qjnt

)αj
(12)

where
∑

j α
j = 1, and Qjnt is the amount of industry j composite output. Final good price

index is then given by:

Pnt = ξ
∏
j∈J

(
P jnt

)αj
(13)

where P jnt is the price of industry j’s composite output and ξ =
∏J
j=1

(
αj
)−αj

is a constant.

3.2.2 Intermediate Good Production

Within each industry, a mass of differentiated intermediate varieties are produced in a sequential

production process involving two stages: upstream and downstream. Differentiated varieties

from the first stage of production, i.e upstream, are used in the production of a composite

material input exclusively used in that industry’s second stage of production, i.e. downstream.

Differentiated downstream varieties are then used to produce the industry composite output

which is exclusively used in the production of the final good.

Composite goods, both upstream material and downstream output, are non-traded and are

sold by perfectly competitive producers. A stage s ∈ {u, d} in industry j and country n has the
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Figure 1: Production Structure of the Economy

Labor

Industry 1 Industry j Industry J

Upstream, ωu

Material Input, Y jun

Downstream, ωd

Industry Output, Y 1d
n Industry Output, Y 1d

n Industry Output, Y 1d
n

Final Good, Yn

Notes: This figure provides an illustration of the production structure of the economy. Labor and final good material are
used in the production of all industry-stages of production. Upstream varieties are aggregated into a material composite
input exclusively used in the production of downstream varieties. Downstream varieties are used in the production of the
industry output.

following composite good production technology:

Y js
nt =

∑
l∈N

∫
ωs∈Ωjslnt

(
qjslt (ωs)

) 1

σjs
(
yjslnt(ω

s)
)σjs−1

σjs dωs


σjs

σjs−1

(14)

where Ωjs
lnt is the set of industry j stage s intermediate varieties sourced from country l, qjslt (ωs)

and yjslnt(ω
s) are the quality and quantity of the intermediate variety ωs respectively, and σjs > 1

is the elasticity of substitution across varieties. The corresponding price index for industry j

stage s composite good is given by:

P jsnt =

∑
l∈N

∫
ωs∈Ωjslnt

qjslt (ωs)
(
pjslnt(ω

s)
)1−σjs

dωs


1

1−σjs

(15)

where pjslnt(ω
s) is the price of industry j stage s variety ωs produced in country l paid by the

composite good producer in country n. Demand faced by each variety is:

yjslnt(ω
s) = qjslt (ωs)Y js

nt

(
pjslnt(ω

s)

P jsnt

)−σjs
(16)
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Firms Firms in this model are potential multi-product producers, who operate in one industry.

Within each industry, firms can produce multiple varieties from both stages of production. A

firm f active in country n and industry j is defined by the portfolio of products it produces

in equilibrium {Ωju
nt(f),Ωjd

nt(f)} at time t, where Ωjs
nt(f) = {ωs : f produces ωs}. Panel (a) of

figure 2 illustrates some examples of firm portfolios: firms 1 and 2 are single-product firms,

but in different stages of production, firm 4 is multi-product single-stage producer, and firm

3 is a multi-product multi-stage producer. Note that a firm’s portfolio of products is time

dependent. Firms can add products to their portfolio through innovation, and products get

dropped from their portfolio as market conditions change their profitability over time. Total

varieties produced in stage s of industry j is then the union of all stage s varieties produced by

firms in that industry, Ωjs
nt =

⋃
f∈Fjnt

Ωjs
nt(f), where F jnt is the set of active firms in country n

and industry j.

Since varieties vary only along the quality dimension, I will represent each variety by its

corresponding quality from here on to reduce notation. It is useful to define the following two

objects that are used to represent the set of varieties in the economy. Let M js
nt be the mass of

stage s varieties active in country n and industry j, and Gjsnt(·) be quality distribution of these

varieties.21 I next discuss the sequential production of intermediate varieties produced within

each industry. For ease exposition, I drop the industry indices. Production follows the outlined

process in all industries, and across time.

Upstream Intermediate Varieties In each country and industry, monopolistically compet-

itive firms in the upstream intermediate sector supply differentiated varieties to both domestic

and foreign markets. Upstream varieties face demand from the producers of the composite

material input used by the corresponding downstream stage producers. All upstream producers

face the same production technology, but are differentiated in terms of quality of the products

produced. Production is constant returns to scale and requires labor and material input from

the final good sector. Producers also have to pay an overhead fixed cost of operation, funn, in

terms of domestic labor. The production function for a variety ω is given by:

yunt(q
u) = [lunt(q

u)]β
lu
[
Qfunt (qu)

]βfu
(17)

where lunt(q
u) and Qfunt (qu) is labor and material input (sourced from final good sector) used in

the production of upstream variety qu in country n, and βlu + βfu = 1. Cost minimization by

firms implies the following constant marginal cost function (cun):

cunt(q
u) = cun = ξu (wnt)

βlu (Pnt)
βfu (18)

where ξu =
(
βlu
)−βlu (

βfu
)−βfu

is a constant, wnt and Pnt are wage and final good price in

country n at time t. Input demand function are then given by:

lunt(q
u) = βlu

cunt
wnt

yunt(q
u), Qfunt (qu) = βfu

cunt
Pnt

yunt(q
u) (19)

21Note that, mass of varieties is not equal to the mass of firms in this multi-product firms setting.
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Downstream Intermediate Varieties Similar to the upstream stage of production, mo-

nopolistically competitive firms in the downstream intermediate sector supply differentiated

varieties to both domestic and foreign markets. Downstream varieties face demand from the

producers of the industry specific composite output, which is used in the production of the final

good. All downstream producers face the same production technology, but are differentiated in

terms of their qualities. Production is constant returns scale using labor and material inputs

from the upstream stage and the final good sector. Production also entails an overhead cost of

operation, fdnn, paid in terms of domestic labor. Each variety qd is produced using the following

technology:

ydnt(q
d) =

[
ldnt(q

d)
]βld [

Qfdnt (q
d)
]βfd [

Qudnt (q
d)
]βud

(20)

where ldnt(q
d) is labor used, Qfdnt (q

d) and Qudnt (q
d) is the material input from final good sector and

the upstream stage respectively used in the production of downstream variety ωd in country

n, and βld + βfd + βud = 1. The key feature in the production of downstream varieties is

the exclusive use of upstream varieties, and this ends the sequential production process. Cost

minimization implies the following constant marginal cost function:

cdnt(q
d) = cdn = ξd (wnt)

βld (Pnt)
βfd (P unt)

βud (21)

where ξd =
(
βld
)−βld (

βfd
)−βfd (

βud
)−βud

is a constant, and P unt is the price index of the up-

stream material input composite. Input demand functions implied by the cost minimization

problem are:

ldnt(q
d) = βld

cdnt
wnt

ydnt(q
d), Qfdnt (q

d) = βfd
cdnt
Pnt

ydnt(q
d), Qudnt (q

d) = βud
cdnt
P unt

ydnt(q
d) (22)

3.2.3 International Trade

Upstream and downstream varieties can sell their products in foreign markets, but face standard

iceberg trade costs. To deliver one unit of output to country l at time t, a stage s producer

from country n has to produce and ship τ snlt ≥ 1 units, with τ snnt = 1 ∀n, s. Given this, total

demand faced by each stage’s varieties is:

ysnt(q
s) =

∑
l∈N

I
s
nlt(q

s)τ snlty
s
nlt(q

s) (23)

where Isnlt(q
s) is an indicator function for whether qs produced in country n is sold in country l

at time t. In addition to ice berg trade costs stage s producers also have to pay a fixed exporting

cost, fsnl in terms of domestic labor to export to country l 6= n. Given that there is no fixed cost

of supplying to the domestic market, except the overhead operating cost fsnn, all active varieties

supply the domestic market. Further, because firms have to pay a fixed cost of exporting, over

the fixed production cost, exporting varieties are a weak subset of all domestic varieties.
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3.2.4 Prices, Profits, and Trade Flows

Firms producing intermediate good varieties engage in monopolistic competition in both stages

of production. As in Melitz (2003), I assume each variety is infinitesimally small relative to the

size of each market that it supplies to. Firms choose to produce a variety only if their total

returns from domestic and foreign markets are large enough to cover their fixed production

costs and only export to a foreign market if the returns from that market are large enough to

cover the fixed exporting cost. Returns to supplying to a specific market are the sum total

of the variable profits made by the variety in that market and the option value generated

by innovation activity associated with that market. The innovation process is discussed in

subsection 3.3. Hence, production decisions are forward looking.

Prices Due to iceberg trade costs, the marginal cost of supplying one unit of a stage s variety

differ by the market that the variety is sold to. Profit maximization leads to firms charging a

constant markup over the marginal cost of supplying to a market:

psnlt(q
s) = psnlt =

σs

σs − 1
τ snltc

s
nt (24)

Note that prices charged in a given market are constant across varieties supplied by a country

at time t, as the products are differentiated in terms of demand and not cost in this model.

Profits Given the above pricing strategy and the demand faced by heterogeneous varieties,

variable profits generated from each market supplied to are strictly increasing in the quality of

the variety. Market specific profits are given by:

πsnlt(q
s) = πsnltq

s − fsnlwnt (25)

where πsnlt = Y s
lt (P slt)

σs (psnlt)
1−σs /σs

Total profits generated by a stage s variety qs is the sum of profits from all the markets that it

is supplied to:

πsnt(q
s) =

∑
l∈N

I
s
nlt(q

s)πsnlt(q
s) (26)

Trade Flows The share of country l’s expenditure on country n’s stage s goods depends on

the varieties that are exported, and is defined as follows:

λsnlt =
Xs
nlt∑

n′∈N X
s
n′lt

(27)

where Xs
nlt = σsπsnltM

s
nt

∫
I
s
nlt(q

s)qsdGsnt(q
s)

3.3 Innovation and Knowledge Spillovers

Multi-product firms are engaged in innovation activities at every point in time in the form

of new product creation. Following Klette and Kortum (2004), I model innovation as firms

investing in research and development to discover new product varieties, with the innovation
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Table 11: Types of R&D per product

Upstream product, qu Downstream product, qd

Own-Stage R&D

1 R&D investment: θunt 1 R&D investment: θdnt

New u varieties invented New d varieties invented

Learns from other u varieties sold in the
domestic market

Learns from other d varieties sold in the
domestic market

Cross-Stage R&D

1 R&D investment per export market:{
I
u
nlt(q

u)ηdnlt
}
l

1 R&D investment per input sourcing mar-
ket: {ηunlt}l

New d varieties invented New u varieties invented

Learns from d varieties in market l that
buys qu

Learns from u varieties from market l sold
to qd

Notes: This table lists the types of R&D activity a firm producing a product can invest in, the outcomes of such investments,
and the knowledge spillovers that the product has access to for each type of innovation.

production function proportional to the number of products owned by the firm. Different from

Klette and Kortum (2004) however is the type of innovation activities that a firm can invest in.

Research and Development For every product of a given stage qs in a firm’s portfolio, the

firm can invest in two types of R&D: own-stage innovation (θ) and cross-stage innovation (η).

Own-stage innovation leads to new product generation in the same stage as that of the product,

s, and cross-stage innovation leads to new product generation in stage s′ 6= s. Further, the firm

can invest in cross-stage R&D for every market that it interacts with cross-stage producers from

through product qs. This means that an upstream product that is sold in i number of markets

can invest in i different R&D activities to innovate on downstream products, and learn from its

buyers in these markets. On the other hand downstream products in a country will invest in

all markets from which upstream inputs are imported from. Since all downstream products use

the same set of inputs, all downstream products will invest in the same number of upstream

R&D activity.

Knowledge Spillovers For each R&D activity, firms choose the Poisson rate at which news

varieties are generated. Each product benefits from having access to knowledge from other

varieties it interacts with in own-stage markets and cross-stage markets. I model knowledge

spillovers in a reduced form way in the R&D cost functions. Knowledge spillovers reduce the

cost of innovation, i.e. products that have access to higher quality products on average learn

more efficiently from them.

Table 11 lists all the different types of R&D activity per product that a firm can invest in.

It also summarizes the type of knowledge spillovers the product benefits from for each of these

innovation types. I now discuss these R&D cost functions in detail.

3.3.1 Own-Stage R&D

Each product, qs, of stage s owned by a firm gives it the ability to discover more products in the

same stage of production. This is akin to the external innovation processes described in Klette
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Figure 2: Firms and Innovations

(a) Types of Firm Portfolios

Upstream

Downstream

Firm 1 Firm 2 Firm 3 Firm 4

(b) Types of Firm Innovations

Upstream

Downstream

Firm 1 Firm 2 Firm 3 Firm 4

Notes: Panel (a) illustrates different types of firm portfolios in the economy: firm 1 is a single-product upstream firm,
firm 2 is a single-product downstream firm, firm 3 is a multi-product multi-stage firm, and firm 4 is a multi-product, but
single-stage firm. Panel (b) shows how these firm’s portfolio’s change over time due to different types of innovations. New
products are shown in red. Firm 1 becomes a multi-product, multi-stage firm through cross-stage innovation. Firm 2
becomes a multi-product firm, but stay single-stage through own-stage innovation. Firm 3 gains another product either
through own-stage or cross-stage innovation, while firm 4 doesn’t receive any successful innovations in either stage.

and Kortum (2004) and Akcigit and Kerr (2018). For own-stage innovation, firms learn from all

the products being sold in their domestic market in the spirit of Buera and Oberfield (2020).22

Knowledge spillovers across countries have two key aspects. First, innovation costs are low if

the average quality of products sold in market n, q̃sn, is high. This captures that access to better

quality ideas requires less resources to produce new ideas. Second, the ability of ideas sold in

the market to reduce innovation costs depends of the relative quality of those ideas compared

to domestically produced goods. When domestic ideas are already of higher quality, the relative

importance of insights drawn from outside goods is less important.23 The respective average

qualities are defined as follows:

Average quality produced : q̄sn =

∫
qsdGsn(qs) (28)

Average quality sold : q̃sn =

∑
lM

s
ln

∫
qsdGsln(qs)∑
lM

s
l

(29)

where M s
ln is the mass of products from country l sold in country n, and Gsln(qs) is the distri-

bution of country l product qualities sold in country n introduced in equation 27.

The firm chooses the own-stage innovation rate θs, by investing

Rsn,θ(θ
s) = χsn,θ (θs)ψ

(
q̄sn
q̃sn

)ν
(30)

units of domestic labor, where χsn,θ > 0 is an innovation constant, and ψ > 1 is the curvature

of the innovation function, the ratio q̃sn/q̄
s
n represents own-stage knowledge spillovers, and the

22In Buera and Oberfield (2020) new innovations are drawn from the set of ideas sold in the domestic market,
and are successfully produced only if they are better than existing domestically produced ideas.

23Akcigit and Kerr (2018) also model R&D costs to increase with average productivity in the economy. This
is done in part to capture that more advanced technologies are harder to innovate upon, and to make innovation
effort independent of qualities in equilibrium.
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spillover parameter ν > 0 governs the degree to which knowledge spillovers affect the cost of

innovation. Higher the quality of products that a firm can learn from, q̃sn, lower is the cost

of innovation. At the same time, innovation costs are high if the average quality of products

already produced in the domestic market, q̄sn, is high.

A successful own-stage innovation results in a new product whose quality is drawn from the

incumbent quality distribution of stage s varieties produced by country n firms, Gsnt(·).

3.3.2 Cross-Stage R&D

Every product produced by the firm, qs, also gives the firm an opportunity to learn from

interactions with cross-stage producers. For example, an upstream producer can learn from

interactions with his downstream buyers, and a downstream producer can learn from interactions

with his upstream suppliers. In order to draw insights from buyer-seller relationships however,

a firm has to invest in cross-stage R&D for each market that it wants to learn from. In order

to innovate at rate ηs
′

in the cross-stage s′ by learning from ideas accessed in market l, a firm

with product qs in country n invests

Rs
′
nl,η(η

s′) = χs
′
n,η

(
ηs
′
)ψ ( q̄s′n

q̂s
′
nl

)ν
(31)

units of domestic labor, where χs
′
n,η > 0 is a country-stage specific innovation constant, q̂s

′
nl is

the average quality of cross-stage s′ products from market l that stage s firms may have access

to, and q̄s
′
nl is the average quality of domestic stage s′ products. Consistent with my empirical

results, higher the value of cross-stage quality from market l relative to domestic quality, lower

is the cost of cross-stage R&D for market l. Figure 3 illustrates the cross-stage knowledge

spillovers that an upstream and downstream product may benefit from.

Cross-Stage Spillovers for Upstream Varieties Upstream varieties learn from down-

stream buyers of their product from each market. Therefore, only exporters to market l can

learn from downstream varieties in market l by investing in market l specific R&D. The knowl-

edge spillover term for market l is then given by:

q̂dnl =

∫
qddGdl (q

d) (32)

which is the average downstream incumbent quality in market l. Any upstream product that

is sold to l will be sold to all downstream producers in l.

Cross-Stage Spillovers for Downstream Varieties Downstream varieties learn from sup-

pliers of upstream input varieties from each source market. Since I do not model firm level

import decisions, and all firms sourcing strategies are the same, every firm will access the same

knowledge from each market l that exports upstream products to n. The knowledge spillover

term from market l is then given by:

q̂unl =

∫
qudGuln(qu) (33)
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Figure 3: Cross-Stage Knowledge Spillovers across countries

(a) Cross-Stage Innovations by Upstream Varieties

Upstream Upstream

Downstream Downstream

Domestic, n Foreign, l

ηdnl

ηdnn

(b) Cross-Stage Innovations by Downstream vari-
eties

Upstream Upstream

Downstream Downstream

Domestic, n Foreign, l

ηunl

ηunl

Flow of Goods Flow of Ideas

Notes: This figure provides a simple illustration of how international trade results in diffusion of ideas across countries
through cross-stage innovations resulting from buyer-seller relationships. Upstream varieties gain insights from their do-
mestic and foreign downstream buyers- panel (a), and downstream varieties gain upstream insights from their domestic
and foreign suppliers- panel(b). Solid lines represents the flow of goods, and dashed lines represent the flow of ideas. Each

market that a product from stage s interacts with leads to a potential innovation in it’s cross-stage at the rate of ηs
′
nl.

which is the average quality of upstream products sold in country n from country l. All down-

stream producers in country n buy these inputs.

Every cross-stage innovation results in a new s′ variety being invented whose idea is drawn from

the incumbent quality distribution in the domestic country, Gs
′
nt(·).

To conclude the section on incumbent innovation and to take stock, there are four different

types of R&D a firm can potentially invest in: Run,θ, R
d
n,θ, R

u
n,η, andR

d
n,η. A firm with products

only from one stage of production, say s, will invest in own stage R&D in s and cross-stage

R&D in s′. However, a firm with products in both stages of production will invest in all four

types of R&D activities. Note that, there are two key implications of this innovation structure:

(1) a single-product firm can potentially become a multi-product firm if it draws a successful

innovation, and (2) a single-stage firm can potentially become a multi-stage firm if a successful

cross-stage innovation is drawn. Panel (b) of figure 2 illustrates how firm portfolios can change

in response to different innovation outcomes.

3.4 Incumbent Dynamic Problem

Having described the dynamic environment that firms function in, I now formalize the incumbent

firm’s problem, and it’s value function. A firm is defined as a portfolio of products potentially

from both stages of production. At every point in time, for every product in its portfolio, the

firm makes decisions to supply to markets and makes profits, as well as invests in different types

of R&D activity in order to expand its portfolio. Each product is also destroyed at an exogenous

rate δ. I represent a firm by its portfolio of products, {Qd, Qu}, where Qs is the set of stage-s
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products produced by the firm. The value function of a firm that owns {Qd, Qu} is given by:

rntVnt
(
Qu, Qd

)
− V̇nt

(
Qu, Qd

)

= max
{Iunlt(q

u)}Qu,l

{Idnlt(q
d)}

Qd,l

θun≥0, θdn≥0

{ηdnl}l≥0, {ηunl}l≥0

∑
s∈{u,d}

∑
qs∈Qs



∑
l I
s
nlt(q

s) [πsnltq
s − fsnlwnt]

+I
s
nnt(q

s)δ
[
Vnt

(
{Qs \ qs} , Qs

′
)
− Vnt

(
Qs, Qs

′
)]

+I
s
nnt(q

s)θsn

[∫
Vnt

(
{Qs, zs} , Qs

′)
dGsnt (zs)− Vnt

(
Qs, Qs

′)]
−Isnnt(qs)Rsn,θ (θsn)wnt


+
∑

qu∈Qu


∑
l I
u
nlt(q

u)ηdnl

[∫
Vnt

(
Qu,

{
Qd, zd

})
dGdnt

(
zd
)
− Vnt

(
Qu, Qd

)]
−
∑
l I
u
nlt(q

u)Rdnl,η
(
ηdnl
)
wnt


+
∑
qd∈Qd

I
d
nnt(q

s)
∑
l η
u
nl

[∫
Vnt

(
{Qu, zu} , Qd

)
dGunt (zu)− Vnt

(
Qu, Qd

)]
−Idnnt(qd)

∑
lR

u
nl,η (ηunl)wnt



(34)

The firm’s dynamic problem involves an optimal choice of production decisions, Isnnt(q
s),

export decisions, Isnlt(q
s) ∀l 6= n, and innovation effort in different types of R&D.24 The first

line on the right hand side of equation 34 represents the profits made from each market that

the firm chooses to supply to net of the fixed costs of operating/exporting. The second line

captures the change in value function due to an exogenous destruction of a product owned and

produced by the firm, which occurs at Poisson rate δ. The third line shows the change in firm

value when the firm gets an own-stage innovation, and adds a new variety zs to it’s portfolio

at Poisson rate θsn. A product qs has to be active (Isnnt(q
s) = 1) in order to invest in own-stage

R&D. When a new product is added through own-stage innovation, the quality is drawn from

the incumbent quality distribution, Gsnt(·). The fourth line is the cost of own-stage R&D.

The remaining part of the incumbent value function describes the cross-stage innovation

outcomes. Cross-stage innovation is different for upstream and downstream products. The

fifth line represents the change in value function when an upstream product innovates a new

downstream variety zd from any of the markets it exports to. The sixth line is the associated

R&D costs. The seventh line represents the change in value function when a downstream

product innovates a new upstream variety zu from any of the markets it imports inputs from.

Note that in a trade equilibrium, all downstream varieties import from all countries, and hence

the only requirement for them to invest in cross-stage innovation is producing in at least the

domestic market. The last line represents the associated R&D costs. The quality of any

new product added through cross stage innovation is also drawn from the domestic incumbent

distribution , Gsnt(·).
For every product that a firm owns, the decision to produce a product, decisions to export a

product to different markets, and decisions to innovate are dependent on each other. The firm

therefore decides on whether to produce a product based not only on the present profits it can

make, but also takes into consideration the expected future returns to innovation (own-stage,

and all cross-stage for downstream products). Similarly, the decision to export for upstream

24Note that I
s
nnt(q

s) = 1 would imply that the product qs is active, and is also supplied to the domestic
market. Since there is no fixed cost of supplying to the domestic market, every product that pays the fixed cost
of production will also supply to the domestic market.
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products depends on the profits from exporting the product plus the expected returns to cross-

stage innovation from that export market. We can see from the value function that expected

return to per-product per-market R&D investment is independent of the product and market

in question, and is equal to a constant for all innovations. The only variable component to

the total returns of producing/exporting a product are the variable profits which are linear in

product quality. This means that a firm chooses to produce/export a product if it is above a

certain quality threshold that makes it generate positive profits. We can then write:

I
s
nlt(q

s) =

1 if qs ≥ qs∗nlt
0 if qs ≤ qs∗nlt

(35)

Note that this implies that the incumbent distribution Gsnt has zero density below qs∗nnt at time

t.

3.5 Entry and Exit

Apart from incumbent innovation, a mass Esnt of stage s entrants also invest in R&D by employ-

ing fsne,t units of domestic labor. Entrants benefit from the same type of knowledge spillovers

that incumbents investing in own-stage R&D benefit from. The cost of entrant R&D is cheaper

if the average quality of products sold in the market is high (ideas they can learn from), but

higher if the average quality of incumbent products in the domestic market are higher (ideas

they are innovating upon). Per entrant R&D cost is given by:

fsne,t = χsn,e

(
q̄sn
q̃sn

)ν
(36)

Every entrant R&D investment results in the invention of a new product, whose quality is drawn

from the incumbent distribution, Gsnt(·). Free entry requires that the cost of entry equal the

value of entering the market with a quality randomly drawn from the incumbent distribution.

fsnewnt = χsn,e

(
q̄sn
q̃sn

)ν
wnt =

∫
Vnt({qs}, ∅)dGsnt(qs) (37)

Exit in the economy occurs through two channels: (1) exogenous death at a Poisson rate

δ as discussed above, (2) endogenous exit over time due to changing market conditions. Note

that product quality is time-invariant, but, average product quality in the economy increases

due to new product introduction by entrants and incumbents alike. This causes changes to the

market profitability of a product over time. Once the product is no longer profitable to produce

is dropped from the firm’s portfolio.

3.6 Evolution of Product Mass and Quality Distribution

Innovations by incumbents and entrants alter the mass of varieties produced in the economy,

and the quality distribution of the operated varieties. Before characterizing the law of motion

for product mass and quality distributions, it is useful to define total cross-stage innovation

intensity performed by an average product in the economy. Let ηs
′
n be the total cross-stage
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innovation intensity performed by the average product in stage s, then:

Upstream Cross-Stage Innovation: ηdn =
∑
l

(∫
I
u
nlt(q

u)dGunt(q
u)

)
ηdnl

Downstream Cross-Stage Innovation: ηun =
∑
l

ηunl

(38)

Cross-stage innovation for upstream products depends on the export status of the product.

Therefore, in line one of equation 38 the total cross-stage innovation performed by an average

upstream product depends on the fraction of varieties that export to each market. Total cross-

stage innovation for an average downstream product is simply the sum of all market specific

innovation intensities.

Following Sampson (2016), I analyze the evolution of product masses and quality distribu-

tions by first discretizing time into periods of length ∆, and then taking the limit as ∆ → 0.

Also, as in Sampson (2016), I assume that the exit threshold qs∗nnt is strictly increasing over

time. The mass of active stage s products at time t+ ∆ that have quality less than qs is:

M s
n(t+∆)G

s
n(t+∆)(q

s) =
(
M s
nt + ∆θsnM

s
nt + ∆ηsnM

s′
nt + ∆Esnt

) [
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]

−∆δM s
nt

[
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
] (39)

The first term on the right hand side of the equation represents the mass of products that were

active in the market at time t with quality less than qs that would also be active in the market

at time (t+∆). The set of products at time t include incumbents of mass M s
nt, new innovations

through own-stage R&D of mass ∆θsnM
s
nt, new innovations through cross-stage R&D of mass

∆ηsnM
s′
nt, and finally new innovations through entrants of mass ∆Esnt. The second line represents

the loss in the mass of products due to exogenous exit. Evaluating equation 39 as qs →∞ will

give us the total mass of products active at time (t+ ∆),

M s
n(t+∆) =

(
M s
nt + ∆θsnM

s
nt + ∆ηsnM

s′
nt + ∆Esnt −∆δM s

nt

) [
1−Gsnt(qs∗nn(t+∆))

]
(40)

Further taking the limit as ∆ → 0 on equation 40, and rearranging the equation, gives us the

law of motion for total mass of varieties in continuous time,

Ṁ s
nt

M s
nt

= θsn + ηsn
M s′
nt

M s
nt

+
Esnt
M s
nt︸ ︷︷ ︸

Rate of New Innovations

− δs∗nt︸︷︷︸
Rate of Endogeneous Exit

− δ︸︷︷︸
Rate of Exogeneous Exit

(41)

where Ṁ s
nt =

dMs
nt

dt , and δs∗nt =
∂Gsnt(q

s∗
nnt)

∂q
∂qs∗nnt
∂t . The rate of change of mass of varieties depends

positively on the rate of new innovations (own-stage, cross-stage, and entrant), and negatively

on the rate of endogenous and exogenous exit. Endogenous exit occurs in the model due to the

increased competition causing an increase in the exit threshold over time. This causes varieties

at the edge of the quality distribution to exit over time.

Finally, substitution equation 40 into equation 39 and taking the limit as ∆ → 0, gives us
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the law of motion for the quality distribution,

∂Gsnt(q
s)

∂t
= −δs∗nt [1−Gsnt(qs)] (42)

Thus, the density of products less than quality q reduces over time with the growth of the

exit cutoffs. See appendix B.1 for detailed derivations of the two laws of motion. I now solve

for a stationary distribution of product qualities given an assumption on the initial quality

distributions.

3.6.1 Stationary Distributions

In a stationary distribution, the distribution of relative quality qs/q̄snt (quality relative to average

quality in the market) is constant over time. The following initial condition is sufficient to ensure

that the relative quality distribution is stationary at every point in time.25

Assumption 1

The initial distribution of product quality is Pareto:

Gsn0(qs) = 1−
(

qs

qs∗nn0

)−γs
(43)

with γs > 1, and qs∗nn0 > 0 is the initial exit threshold in country n and stage s.

At every point in time, competitive pressures in the economy leads to the lowest quality products

to exit the market. This results in a continual truncation of the quality distribution from below.

As in Sampson (2016), the quality distribution has a stable shape, and resembles a traveling

wave as the exit threshold grows. The quality distribution remains Pareto over time with the

same shape parameter, γs, but a growing exit threshold qs∗nnt = exp
(∫ t

0 g
s
ntdt

)
qs∗nn0, where gsnt

is the growth rate of the exit threshold at time t.

Proposition 1

When assumption 1 holds, the equilibrium quality distribution is given by:

Gsnt(q
s) = 1−

(
qs

qs∗nnt

)−γs
(44)

Proof See Appendix B.2. �

Given this result on the quality distributions, I can derive the rate of endogenous exit at any

point in time as:

δs∗nt = γsgsnt (45)

The rest of the model is analyzed under the Pareto distribution assumption.

25This is true for when the economy is in a balanced growth path, as well as the transition path
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3.7 Evolution of Firm Portfolio Distribution

New innovations and exit in the economy alters not only the mass and distribution of varieties,

but also the distribution of firm portfolios. Let Nnt(n
u, nd) be the mass of firms with nu

number of upstream varieties and nd number of downstream varieties. Then, the change in the

this portfolio mass of firms is given by:

Ṅnt(n
u, nd) = Nnt(n

u − 1, nd)
[
(nu − 1)θunt + ndηunt

]
+Nnt(n

u + 1, nd) [(nu + 1)δunt]

+Nnt(n
u, nd − 1)

[
nuηdnt + (nd − 1)θdnt

]
+Nnt(n

u, nd − 1)
[
(nd + 1)δdnt

]
−Nnt(n

u, nd)
[
nu(θunt + ηdnt + δunt) + nd(θdnt + ηunt + δdnt)

]
with Ṅnt(1, 0) = Eunt +Nnt(2, 0)× 2δunt +Nnt(1, 1)δdnt −Nnt(1, 0)

[
θunt + ηdnt + δunt

]
Ṅnt(0, 1) = Ednt +Nnt(0, 2)× 2δdnt +Nnt(1, 1)δunt −Nnt(0, 1)

[
θdnt + ηunt + δdnt

]
(46)

where δsnt = δ+δs∗nt is the aggregate exit rate. The change in mass of firms of a specific portfolio

depends on the mass of firms that enter the portfolio from the cells surrounding it, and on the

mass of firms that exit the portfolio (either by adding a product or dropping a product).

3.8 Equilibrium

In addition to producer and consumer optimization, equilibrium requires that labor market and

goods markets also clear. Labor faces demand for production, fixed costs of production and

exporting, and finally R&D costs by incumbents and entrants. Upstream good varieties face

demand from downstream producers from all countries in a trade equilibrium. Downstream

varieties face demand from final good producers from all countries. Final good producers

face consumption demand and input demand from upstream and downstream producers. See

appendix B.3 for market clearing equations.

An equilibrium of the world economy is defined by the following time paths for t ∈ [0,∞),

and for all countries n ∈ N , industries j ∈ J and stages s ∈ {u, d} (where applicable): prices

{rnt, wnt, P jsnt , Pnt}, final consumption and output {Cnt, Ynt}, sectoral expenditures {Xjs
nt}, ex-

penditure shares {λjsnlt}, mass of products {M js
nt}, quality distributions {Gjsnt}, market entry

thresholds {qjs∗nlt }, incumbent innovation rates {θjsnt, η
js
nlt}, flow of entrant innovations {Ejsnt},

value functions {V j
nt()} and growth rates of quality distributions {gjsnt}, such that (i) consumers

maximize utility subject to budget constraint 10 implying the Euler equation 11 is satisfied,

(ii) producers maximize static profits implying the output rule 16 and pricing rule 24 are sat-

isfied, (iii) incumbents solve their dynamic problem in 34 , thereby determining the market

entry thresholds, and incumbent innovation rates, (iv) entrants solve entry decisions and free

entry holds in 37, (v) market thresholds are strictly increasing, and the evolution of mass of

products and quality distributions are governed by 41 and 42 respectively, (vi) labor markets

clear, (vii) goods markets clear for upstream intermediate varieties, downstream intermediate

varieties, and final good.
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3.9 Balanced Growth Path

I will now analyze the balanced growth path (BGP) equilibrium of the world economy. In a

BGP, consumption, output, wages, prices, sectoral expenditures, value functions, and market

entry thresholds all grow at constant rates. Interest rates, expenditure shares, mass of products,

flow of entrant innovations and incumbent innovations are all constant over time. Finally, the

relative quality distribution is stationary. I will drop time subscripts when analysing the BGP

henceforth, but as mentioned variables in BGP are either constant or grow at a constant rate.

3.9.1 Incumbent Decisions and Value Function

Proposition 2 solves the firm’s dynamic problem in a BGP under an assumption, and lists the

equilibrium firm decisions on producing, exporting, and innovating. See appendix for deriva-

tions.

Assumption 2

The fixed costs of exporting, fsnl, are large enough such that export thresholds to market l are

strictly greater than the entry thresholds, i.e.

qs∗nl > qs∗nn ∀l 6= n (47)

Assumption 2 ensures that not all products that are active in the domestic market export to

a foreign market. The set of exporting varieties is a strict subset of all active varieties in the

economy.

Proposition 2

When assumptions 1-2 hold, the following firm level outcomes are true.

(i) Value function of an incumbent can be written as:

Vn

(
Qu, Qd

)
=

∑
s∈{u,d}

∑
qs∈Qs

∑
l

I
s
nl(q

s)vsnl(q
s) (48)

where vsnl(q
s) is the country-pair specific value of operating a stage s product of quality s.

(ii) Optimal innovation intensity of incumbents:

Own-Stage: θsn =

(
fsne
ψχsn,θ

(
q̃sn
q̄sn

)ν) 1
ψ−1

=

(
χsn,e
ψχsn,θ

) 1
ψ−1

Cross-Stage: ηsnl =

(
fsne
ψχsn,η

(
q̂snl
q̄sn

)ν) 1
ψ−1

=

(
χsn,e
ψχsn,η

(
q̂snl
q̃sn

)ν) 1
ψ−1

(49)

(iii) Market entry decisions take the form described in equation 35

(iv) Market entry threshold qualities are given by:

qs∗nl =
f̃snlwn
π̄nls

(50)
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(v) f̃snl is the fixed cost of operating in market l net of expected return from market specific

innovation:

Upstream: f̃unl =

funn − (ψ − 1)Run,θ (θun)− (ψ − 1)Rdn,η
(
ηdnn
)

if l = n

funl − (ψ − 1)Rdn,η
(
ηdnl
)

if l 6= n

Downstream: f̃dnl =

fdnn − (ψ − 1)Rdn,θ
(
θdn
)
− (ψ − 1)

∑
lR

u
n,η (ηunl) if l = n

fdnl if l 6= n

(51)

(vi) The components of the value function are given by:

vsnl(q
s) =

(
π̄snlq

s

gsn(κsn + 1)
−
f̃ snlwn
gsnκ

s
n

)
−

(
π̄snlq

s∗
nl

gsn(κsn + 1)
−
f̃snlwn
gsnκ

s
n

)(
qs

qs∗nl

)−κsn
(52)

where κsn = (rn + δ − gwn)/gsn, gsn is the BGP growth rate of the domestic entry threshold

qs∗nn, and gws is the BGP growth rate of wages in country n.

Proof See Appendix B.4. �

This result extends the models of heterogeneous firms and growth as in Sampson (2016)

and Perla et al. (2019) to a setting with asymmetrical countries and incumbent innovation.

On a balanced growth path, firm values depend on the static profits made from selling to

different markets, as well as the dynamic returns from different types of R&D activities (which

are incorporated into net fixed costs of market entry f̃snl). Therefore, firms internalize that

fact that entry into a market comes with the option value of developing new products in the

future, which results in market entry thresholds to be different from a model with no incumbent

innovation. More discussion on this is available in subsection 3.10.

When incumbents choose the optional innovation strategy, they weigh the costs and benefits

for a given type of R&D activity. The benefit from a successful innovation is a new product

added into the firm portfolio. Since this product is drawn from the existing distribution of

qualities, the value of this added product is equal to the value of an entrant in the market. Since

R&D costs for entrants and incumbent own-stage innovation benefit from the same knowledge

spillovers,26 free entry condition implies that own-stage innovation intensity is independent of

the amount of knowledge spillovers experienced by incumbents. One can see this in the first

part of equation 49. However, cross-stage innovation intensity increases with the amount of

knowledge a firm can learn from accessing each market relative to the amount of knowledge an

entrant learns from. This is evident in the second part of equation 49.

3.9.2 Growth

I now derive the BGP growth rates of quality thresholds and final output/consumption. Recall

that for the while deriving the evolution of quality distributions in section 3.6 I assumed that

domestic quality thresholds are strictly growing over time, implying gsn > 0. To ensure this

condition is positive, I impose the following parameter restriction:

26These are knowledge spillovers resulting from ideas being sold in the market.
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Assumption 3

For every country n and stage s, the parameters of the model satisfy:

∑
l

(
qs∗nl
qs∗nn

)−γs ( f̃snl
fsne

)
> (δ + ρ)(γs − 1) (53)

Proposition 3

When assumptions 1-3 hold, the growth rate of the domestic quality thresholds in country n and

stage s is given by:

gsn =
1

γs(γs − 1)

∑
l

(
qs∗nl
qs∗nn

)−γs ( f̃ snl
f sne

)
− δ + ρ

γs
(54)

Proof See Appendix B.6. �

Proposition 3 highlights the relationship between international trade and growth. Growth is

higher in a world with trade, as exposure to trade leads to higher competition in the economy

causing low quality products to exit. The higher the competitive pressures, faster is the exit

of products on the lower end of the distribution. This feature of the model is identical to the

mechanism in Sampson (2016), except that it has been applied to asymmetric countries.

A second key feature of the growth equation is the relationship between entrant R&D cost,

fsne and growth. Growth is higher when entry is cheaper. Also recall that fsne = χsn,e

(
q̄sn
q̃sn

)ν
.

This implies that cross-country knowledge spillovers enjoyed by entrants also increases growth.

Furthermore, an important implication of cross-country knowledge spillovers is that the growth

rates in all countries in a given stage are equalized. Note that, if this were not true in a BGP,

the knowledge spillover term, q̄sn
q̃sn

, would change over time causing the growth equation to not

be constant over time. This is a contradiction to BGP. Therefore, in a world with stage specific

knowledge spillovers stage specific growth rates are equalized across all countries, i.e. gsn ≡ gs.
The input-output structure, and round-about nature of production causes the growth rate of

composite upstream and downstream output to be an amplification of the stage specific quality

growth rates. In an economy with just one industry, i.e. J = 1, the growth rates of the

composite outputs can be written as:

gYs =
(
S + (I−B)−1 BS

)
gs (55)

where gYs = (gY u gY d)
T is a column vector of growth rates of stage specific composite good

Y s
n , gs = (gu gd)T is the column vector of growth rates of stage specific quality thresholds, qs∗nn,

and B is a matrix of production input-output linkages, and S is a diagonal matrix of elasticities

of substitution:

B =

(
0 βfu

βud βfd

)
S =

(
1/(σu − 1) 0

0 1/(σd − 1)

)
Growth rate of final output and consumption under single industry assumption is simply

equal to the growth rate of downstream output, gY = gY d . Note that, final output and stage
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specific output growth rates are equalized across countries, which directly follows from growth

rate of quality thresholds being equalized. Therefore, in a setting with asymmetric countries,

knowledge spillovers will lead to growth rate of consumption being equal across all countries.

The derivation for final output growth rates is in appendix B.7.

3.9.3 Welfare

Welfare along the BGP can be calculated to be a combination of a static component and a

dynamic component of the gains from trade. Consider that the economy reaches a BGP at time

t∗, then welfare (equivalent to utility) is given by:

Unt∗ =

∞∫
t∗

eρt log
(
egtCnt∗

)
dt =

log (Cnt∗)

ρ︸ ︷︷ ︸
Static

+
g

ρ2︸︷︷︸
Dynamic

(56)

The static component of the welfare gains is similar to the gains from a static steady-state

model of trade with no growth. The dynamic component of welfare gains comes from growth.

As in Sampson (2016), trade affects both components of welfare.

3.10 Discussion

Before moving to the quantitative analysis of the model, there are some features of the model

that are worth discussing. The above described model is an extension of Sampson (2016) and

Perla et al. (2019) on two main fronts: (1) asymmetric countries and (2) incumbent innovation.

Both Sampson (2016) and Perla et al. (2019) study symmetric country models for analytical

tractability to analyze a channel of growth from dynamic selection, and domestic technology

diffusion. As Perla et al. (2019) points out, balanced growth paths with asymmetric economies

will exist only in knife-edge conditions without international technology diffusion. In this pa-

per, I introduce knowledge spillovers between countries that enables me to study asymmetric

countries. Specifically, entrant firms learning from all products sold in their domestic economy

ensures that a fraction of knowledge developed in the foreign economy is internalized into the

domestic economy. A consequence of this however is that in a world with knowledge spillovers

that benefit entrants, all countries will grow at the same rate in the balanced growth path.

This also results in the economy having two margins of growth: first, the dynamic selection

channel highlighted in the above two papers, and a second new channel through international

spillovers. As is evident from the growth rate equation in proposition 3, all else equal, lower

costs of entry leads to higher growth. Recall that entry costs are a combination of R&D cost

constant, and knowledge spillovers. The higher the quality of products sold in a country relative

to domestically produced products, the lower is the cost of entry. This implies that growth is

higher in a trade equilibrium.

Introducing incumbent innovation into a dynamic selection model results in two opposing

effects on welfare. Incumbent firm values are higher in an economy where incumbents can

add new products compared to an economy where incumbents are purely single product firms.

Increases in firm values results in higher entry in equilibrium as entrants innovate more in order
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to capture the increased value of being an incumbent. This can be seen in equation 52 once we

substitute for f̃snl. Firm value increases with the expected value of receiving a future innovation.

This results in a higher mass of firms and higher output and consumption levels in a steady state

equilibrium. In terms of my model, this would result in an increase in the static component

of welfare. However, at the same time, an increase in the option value of being an incumbent

also makes lower quality firms stay in the market as they expect to become profitable in the

future by adding new products into their portfolio. This results in a worse distribution of firms

with lower average quality. One can see this in equations 50-51, where the domestic market

entry cutoffs, qs∗nn are lower, resulting in a lower average quality of products produced in the

market. In a model where new innovation qualities are drawn from the incumbent distribution,

this makes entrants draw worse products on average resulting in lower growth. While the static

component of welfare increases from incumbent innovation, the dynamic component of welfare

coming from growth is decreased due to worse products being active in the market. Which

of these effects dominates in a BGP would depend on model parameters, and economy being

calibrated.

Figure 4 plots the relationship between incumbent innovation costs and the two components

of welfare for illustrative purposes, for a toy economy in Autarky. The graphs are intended to

help one understand the mechanisms in play when incumbent innovation is introduced into a

growth model based on dynamic selection. Panel (a) plots welfare when own-stage innovation

costs decrease for upstream and downstream, and panel (b) plots the same when cross-stage

innovation costs decrease.27 As discussed above, both types of incumbent innovation leads

to opposing effects on the two components of welfare. A decrease in incumbent innovation

increases static welfare as incumbent values increase. However, dynamic welfare decreases due

to selection of worse firms over time.

This relationship between incumbent innovation and welfare is important to understand as

it helps us understand the contribution of knowledge spillovers experienced by incumbents to

growth and welfare. Knowledge spillovers due to trade experienced by a laggard economy re-

duces the cost of incumbent R&D, while the leading economy faces higher R&D costs.28 Since

both economies have to grow at the same growth rate, the impact of knowledge spillovers expe-

rienced by incumbents on dynamic welfare/growth is a combination of the effects experienced

by both economies: laggard country faces as downward push to it’s growth, while the leading

economy faces the opposite. Individual consumption experiences due to knowledge spillovers,

all else equal, should go in opposite direction. Decrease in R&D cost in the laggard economy

increases static consumption, while the increase in R&D cost in the leading economy will de-

crease consumption. However, the actual contribution of knowledge spillovers on both static

and dynamic components of welfare depends on other general equilibrium adjustments in the

economies.

27This economy has no knowledge spillovers as it is in Autarky. The baseline economy is given by the following
innovation cost parameters: χse = 1, χsθ = 30, χsη = 30. The simulations in figure 4 reduce the incumbent costs of
both stages of production for each type of innovation keeping all other parameters constant.

28In a two country model, a leading economy is the one with higher avergae knowledge/quality, while the
laggard economy is one with the lower average quality of produced varieties.
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Figure 4: Incumbent Innovation and Welfare

(a) (b)

Notes: This figure plots the relationship between incumbent innovation and the different components of BGP welfare for
a toy economy in Autarky. The baseline economy’s parameters are given by: χse = 1, χsθ = 30, χsη = 30. Panel (a) plots a
decrease in own-stage innovation costs for both stages, χsθ, and panel (b) does the same for cross-stage innovation costs.

4 Calibration

This section outlines the calibration of my model. Since the goal is to study firm-level dynamics,

both its impact on the economy and its response to economic changes, I calibrate the model to

replicate firm-level innovation outcomes in the data. For computational tractability, I restrict

the analysis to two “countries” and single industry with two stages of production.

4.1 Overview

I calibrate the model to a world with two countries, (N = 2): India (domestic) and a foreign

country, which is an aggregate of the ten major trading partners of India (in manufacturing):

USA, China, Germany, France, Great Britain, South Korea, Italy, Japan, Australia, and Tai-

wan.29 I use the World Input Output Database (WIOD) to gather trade flows at an aggregate

level and choose the top trading partners. Henceforth, countries will be represented by “IND”

for India and “ROW” for the foreign aggregate. Population size of “IND” is set to be half the

size of “ROW”.30

I also restrict analysis to have only one industry (J = 1), and classify all goods produced

in the world into upstream and downstream. I classify goods into the two stages of produc-

tion based on the share of output that goes into final demand. I apply this rule to all the

manufacturing sectors used in the WIOD, and use the median value of final demand share

to divide sectors into upstream or downstream. This results in a total of 18 broadly defined

29I measure total trade as the sum of Indian imports from each country and Indian exports to each country,
excluding Indian domestic expenditures. USA ranks first in total trade share at 12.8%, and Taiwan ranks tenth
at 1.7%. See table C31 in appendix C for details on the set of countries in the foreign aggregate.

30I use data from the Penn World Tables for the year 2007 to calculate aggregate population for my “ROW”
region, and get the relative population sizes.
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manufacturing sectors in the WIOD divided equally.31

Finally, I bring this sector classification into the Indian dataset and classify products into

upstream and downstream using a crosswalk.32 Using this, I then categorize plants as either

single-product, multi-product single-stage, and multi-product multi-stage plants.33

The model parameters to be calibrated include the preference parameters {ρ, σs}, production

function parameters β,34, trade parameters {γs} and {{f snl}, {τ snl}} for each origin-destination

and stage pair, firm and R&D parameters {δ, ψ}, the spillover elasticity parameter {ν}, and

{{χsn,θ}, {χsn,η}} for each country-stage pair, and entrant R&D parameters {χsn,e} for each

country-stage pair. I assume all primitives of the model except trade barriers and innovation

costs to be common across countries.

Some of these parameters are calibrated externally and some are calibrated internally to the

model. The shape parameters of the quality distributions, {γs}, are estimated using a gravity

equation that is consistent with my model. Further, fixed costs of operating/exporting, {f snl},
are then implied from the resulting gravity estimation procedure. More details are outlined in

section 4.3.

4.2 External Calibration

I set the time discount parameter ρ = 1%, which implies a 7% interest rate in the balanced

growth path for India. The value for the constant elasticity of substitution for both upstream

and downstream varieties is taken from Broda and Weinstein (2006) and set to σs = 3.35 The

production function parameters are implied from WIOD. Labor elasticities are set to be the

share of value added in total expenditures, upstream input elasticity (for only downstream

production) is set to be the share of upstream input expenditure, and final good elasticity is

set such that all input elasticities sum to one. The exogeneous exit rate of varieties is set at

δ = 0.1 to reflect the exit rate of big plants in India.36 The innovation cost curvature is set to

ψ = 2 and is a value commonly used in the literature. Finally, the spillover elasticity parameter

that governs the extent to which quality differences across countries contribute to R&D costs,

ν, is set to 1 to reflect the evidence of foreign knowledge spillovers uncovered in the empirical

analysis.37

31See table C32 in appendix C for industry details.
32The WIOD uses the ISIC Rev. 4 classification. I construct a mapping from ISIC Rev. 4 to the ASICC

product classification used by the Indian manufacturing dataset. See appendix for details on these crosswalks.
33Note that this would result in a different categorization of plants compared to that used in the empirical

analysis. The fine detail of product level relationships used in the empirical section, and the broad classification
used here are different. In appendix C, table C33 lists the share of plants in each category of plant type resulting
from this exercise, and table C34 shows the transition matrix of plants changing their types from one year to the
next. A key objective of the calibration strategy is to mimic this plant type distribution and transitions.

34β is the matrix of input elasticities in the production technology for upstream and downstream varieties.

β =

(
βlu βuu βfu

βld βud βfd

)
, where βuu = 0.

35I take the average value of σ estimated in Broda and Weinstein (2006) across the three categories of goods:
Commodity, Reference priced, and Differentiated, for the years 1990-2001.

36I use census plants that appear in the first year of my Indian manufacturing plant sample, and classify a
plant as having ”exited” the market if they do not appear again in any of the following years of the sample. This
means a plant that is active in 2001, and does not produce anything for 8 years after. This is done in order to
avoid over-estimating the death rate as plants that become small over time are sampled randomly.

37The results in the empirical section are suggestive of the fact that foreign technology diffuses in the domestic
economy through trade. However, the regression specification and functional forms of the variables used are not
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Table 12: Externally Calibrated Parameters

Parameter Value Notes

Preferences & Production

Discount Rate ρ 0.01 BGP interest rate = 7%

CES Parameter σ 3.00 Broda and Weinstein (2006)

IO linkages β Table 13 WIOD, Expenditure shares

Trade

Pareto Parameter γ 5.00 Gravity Estimation, see Section 4.3

Variable Trade Costs τsnl Table 14a TRAINS database

Fixed Trade Costs fsnl Table 14b Gravity Estimation, see Section 4.3

Firms & R&D

Exogeneous Exit δ 0.10 Exit rate of large firms

Innovation Cost Curvature ψ 2.00 Literature

Knowledge Spillovers Elasticity ν 1.00 Empirical Analysis

Table 13: Production Parameters

βl βu βf

Upstream 0.40 0.00 0.60

DownStream 0.40 0.25 0.35

Tariff data is taken from the Trade Analysis Information System (TRAINS) database for

the year 2007. I use a weighted average of tariff rates between “IND” and “ROW” based on

import and export share weights. The quality distribution shape parameter is implied from the

trade elasticity parameter. I outline the gravity estimation and the resulting calibration in the

next section. 38 Table 12 lists all the parameter of the model that are externally calibrated.

4.3 Gravity Estimation

I calibrate trade parameters, {γs, fsnl}, by leveraging the gravity equations implied by the model

under assumptions 1-2. Under these assumptions, the quality distribution of the products

imported by country l from country n is also Pareto with shape parameter γs, and minimum

value being equal to export thresholds defined in equations 50-51. Using the definition of

expenditure shares from equation 27, one can derive the exact form in equilibrium to be:39

λsnl =
Mn (qs∗nn)γ

s

(τ snlc
s
n)−γ

s(σ−1) (fsnlwn)−(γs−1)∑
n′Mn′

(
qs∗n′n′

)γs (
τ sn′lc

s
n′
)−γs(σ−1) (

fsn′lwn′
)−(γs−1)

(57)

= ΛSnΛDl (τ snl)
−γs(σ−1) (fsnl)

−(γs−1)

model implied. Ideally, ν would be estimated from a model implied equation, which is work for future.
38See Akcigit and Kerr (2018)
39See appendix for derivation.
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where ΛSn is the source-country n term, and ΛDl is the destination country l term. To address

issues of incidence of zero trade flows between countries, and the inconsistent estimates resulting

from a log-linearized regressiong of equation 57, I estimate the model using the pseudo Poisson

maximum likelihood (PPML) estimator.40 I use the following representation of the gravity

equation to do so:

λsnl =
exp(Ssn + Vs

nlφ
s
V + Fs

nlφ
s
F )∑

n′ exp(S
s
n′ + Vs

n′lφ
s
V + F s

n′lφ
s
F )

(58)

where Ssnis the source-country fixed effect, Vs
nl is the vector of variable trade barriers, and Fs

nl

is the vector of fixed trade barriers. I classify the set of trade cost determinants in the data

into those that would approximately affect variable costs and those that affect fixed costs of

trade. Specifically, I consider variable trade costs to be affected by bilateral tariffs and distance

between regions. Whereas, determinants of fixed costs are assumed to be the similarity between

the trading partners, like trading partners sharing a common border, a common language, have

common legal origins, have common colonizers, and have common legal ties. This is a crude

classification of trade costs, and as Head and Mayer (2014) point out many of the determinant

of variable costs like distance can be reasonably expected to also affect the fixed exporting costs.

However, this allows for a way to calibrate the fixed costs of exporting as a first pass, albeit a

crude one. Note also that, tariffs are always considered to be only a variable trade cost, and

hence my estimate on tariff will be correctly attributed to the elasticity of variable trade cost.

All trade barriers data is from the CEPII Gravity Database.

I first get an estimate for γs by estimating the gravity equation using the PPML method for

each manufacturing sector in the WIOD separately, and use all country-pairs to do so. Domestic

trade barriers are normalized to one. I then take a weighted average of the estimates across the

group of sectors that make up the two stage of production, using output weights of the sectors.

Note that, the elasticity on tariff is equal to −γs(σs − 1). Using the value of σs from Broda

and Weinstein (2006), I then back out values for γs. Tables C35 and C36 in appendix C show

the gravity estimation results for the set of sectors that make up upstream and downstream

respectively. The implied Pareto shape parameters for both sectors are set to be equal to 5.41

Finally, using the calibrated values of γs and σs, the estimated coefficients for other trade

barriers in Tables C35 and C36, I back out fixed exporting costs as:

log(fsnl) =
1

1− γs
Fs
nlφ

s
F (59)

The implicit assumption here is that the set of variables used for fixed costs solely affect the

fixed costs of exporting, and that these variables are translated into monetary units of fixed

costs that is captured in the PPML estimates. Fixed costs implied through this procedure are

listed in table 14b.

40See Silva and Tenreyro (2006) for more details on the benefits of estimating gravity using PPML over OLS.
41Upstream: γu(σu − 1) = 10 and Downstream: γu(σu − 1) = 9.9. With σu = σd = 3, γu = 10.25, γd = 4.95.

I approximate both shape parameter to 5 to keep asymmetry in the computational analysis to a minimum.
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Table 14: Trade Costs

(a) Variable Costs, τnls

IND ROW

Upstream
IND 1.00 1.02

ROW 1.11 1.00

Downstream
IND 1.00 1.05

ROW 1.12 1.00

(b) Fixed Costs, fsnl

IND ROW

Upstream
IND 1.00 1.44

ROW 1.40 1.00

Downstream
IND 1.00 1.35

ROW 1.33 1.00

4.4 Internal Calibration and Identification

The remaining parameters to be calibrated are the innovation cost parameters for incumbents

and entrants. I make the following assumptions about the cost parameters in order to reduce the

number of parameters to be calibrated. The assumptions relate the cost of R&D by incumbents

to be linearly related to the cost of R&D by entrants upto a constant. This means that the

variation across in R&D costs across countries is constant whether we compare incumbents or

entrants.

Entrant R&D : χsne = χ̄eχn

Incumbent Own-Stage R&D : χsn,θ = χ̄sθχn

Incumbent Cross-Stage R&D : χsn,η = χ̄sηχn

(60)

I use different moments to identify the R&D parameters. In order to pin down entrant R&D

costs, I use the growth rate India’s GDP percapita (taken from World Development Indicators

(WDI)), and the average TFP difference India and the foreign aggregate (taken from the Penn

World Tables (PWT)). The growth rate pins down the common entry cost parameter across both

countries, χ̄e. Higher the growth, lower is the cost of entry. The relative entry cost between

the two countries on the other hand will determine relative productivity/quality differences.

Therefore, TFP differences across “IND” and “ROW” pins down the ratio χIND/χROW . The

region with lower cost of entry will have higher equilibrium productivity.42

Since the goal of the quantitative exercises is to understand firm dynamics in response to

policy shocks, I calibrate the rest of the parameters in the model to match incumbent product

innovation activity in the Indian dataset. I use information on only single-product plant-year

observations, and their product adding behavior in the following period. The moment used

to calibrate the incumbent own-stage innovation constant, χsθ is the share of single-product

plants that transition into multi-product plants in the same stage of production. Similarly,

to calibrate incumbent cross-stage innovation constant, χsη is the share of single-product plants

that add a product in the complementary stage of production. Note that I use moment by stages

to calibrate incumbent innovation costs by stage. Again, higher the costs of innovation, lower

is the rate of transitions of plants into different types over time. Table 15 lists the internally

42Note that, firm heterogeneity in my model is introduced as quality differences arising from relative demands.
This is isomorphic to a model with cost heterogeneity, but upto an exponent. That is, average quality in my
model will translate to average productivity to an exponent in a model with cost heterogeneity: q̄ = z̄σ−1, where
q is productivity, z is productivity, and σ is the CES parameter. I translate the TFP differences across countries
in the data into quality differences using this equivalence for the calibration exercise.
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Table 15: Internally Calibrated Parameters

Parameter Value Moment

Country constant χIND
χROW

1.70 Relative TFP between IND and ROW

Entry cost Constant χ̄e 0.72 GDP per capita Growth rate IND

Own-Stage Constant
χ̄uθ 7.87 Share of Single-Product firm’s transitioning

χ̄dθ 6.34 into Multi-Product Single-Stage firms

Cross-Stage Constant
χ̄uη 90.00 Share of Single-Product firm’s transitioning

χ̄dη 28.00 into Multi-Product Multi-Stage firms

Table 16: Model Fit

Moment Data Model Source

GDP per capita Growth rate IND 6.19% 6.06% WDI, Average 2003-2007

Relative TFP IND and ROW 0.49 0.49: Up PWT, 2007

0.48: Down

Share of Upstream single-product plants to
Upstream multi-product plants

6.90% 6.92% ASI, Average 2001-2007

Share of Downstream single-product plants to
Downstream multi-product plants

8.56% 8.65% ASI, Average 2001-2007

Share of Upstream single-product plants to
multi-product multi-stage plants

2.38% 2.41% ASI, Average 2001-2007

Share of Downstream single-product plants to
multi-product multi-stage plants

2.51% 2.53% ASI, Average 2001-2007

calibrated parameter of the model. Table 16 lists the targeted moments in the calibration

exercise, with the model counterparts.

5 Counterfactuals

In this section, I study the quantitative implications of the theoretical framework. The goal of

the quantitative model discussed so far is two fold: (1) to analyse the contribution of incumbent

knowledge spillovers (in own-stage and cross-stage R&D) on aggregate outcomes of the economy,

and (2) to analyse the implications of knowledge spillovers experienced by firms on firm-level

dynamics in a general equilibrium setup. In a world with international exchange of ideas, the

equilibrium level of technology differences, growth, and firm-level outcomes are interlinked.

Hence, to understand the impact of a policy change on firm dynamics, an understanding of how

the economy adjusts to these policy changes is required.

The first set of experiments I run are designed to understand the contribution of knowledge

spillovers on incumbent innovation.43 The second set of experiments pertain to different trade

policy changes. In all counterfactuals, I analyze changes across BGPs. This means that dynamic

changes in welfare do not reflect changes along the transition.

43I cannot switch off knowledge spillovers for entrants in a model with asymmetric economies, as BGPs are
not guaranteed without technology diffusion across economies.
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5.1 Contribution of Knowledge Spillovers

In this counterfactual exercise, I compare the calibrated baseline economy to an economy with

no knowledge spillovers (KS) for incumbent innovation. To be specific, the R&D cost functions

are independent of technology differences across the countries and are given by:

Rsn,θ(θ
s) = χsn,θ (θs)ψ

Rsn,η(η
s) = χsn,η (ηs)ψ

(61)

Table 17 reports the results for the counterfactual economy with no KS for incumbents with

respect to the Baseline economy. Both India and the rest of the world experience decreases

in welfare when incumbents cannot benefit from KS. However, the mechanisms leading to this

result are different for the two economies. Recall the discussion in section 3.10 regarding the

relationship between incumbent innovation and welfare. Removing KS results in Indian incum-

bents facing higher R&D costs as they cannot learn from better foreign products.44 This results

in less incumbent innovation leading lower static welfare, but higher dynamic welfare. Over

all, total welfare increases, albeit by a very small amount, when KS are switched off. Notice

that with an increase in incumbent R&D costs, innovation is reallocated from incumbents to

entrants in the counterfactual economy. In fact, the adjustment of the entry margin could be

the reason for really small welfare changes when incumbent innovation changes.45

The effect of KS on ROW is slightly more complex than on India. Switching off KS for

ROW results in incumbent R&D costs to decrease as firms now do not have to learn from worse

off ideas from India. While this does result in increased incumbent innovation, static welfare

does not increase as expected. The decrease in static welfare is a result of lower average quality

of both upstream and downstream stages of production compared to IND. General equilibrium

effects seem to act against ROW wherein average qualities go down relative to an economy with

KS. This counterfactual exercise brings to light the complex mechanisms involved in the model.

A second set of results with respect to KS focuses on the gains from trade. Table 18 reports

the gains from trade results for an economy with KS and an economy without KS, when the

economy moves from the baseline level of trade to a free trade equilibrium. Not surprisingly,

the contribution of KS to gains from trade are close to zero, in fact slightly negative. The

total welfare gains from trade liberalization in an economy with KS is slightly lower than the

welfare gains in an economy without KS. This may be a result of more convergence between

IND and ROW in average qualities of the two stages of production in an economy with KS. A

final observation in this counterfactual is to note that knowledge spillovers contribute to growth

mostly through entrant innovation.46 Gains from trade are mostly driven by entrants adjusting

to changes in market environments.

Incumbent innovation therefore has little consequence on the overall growth of the economy,

44Recall that in the Baseline economy, India’s average quality is half that of ROW.
45This result is similar what Atkeson and Burstein (2010) finds, where changes to incumbent innovation

decisions, while important for firm-level dynamics, are largely offset by the adjustment of the entry margin
resulting in almost no welfare changes.

46In a model with asymmetric countries, KS on entrants is the only way to achieve a BGP equlibrium.
Therefore, I cannot turn off KS on entrants to compare outcomes when entrants do not benefit from international
spillovers.
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Table 17: Contribution of Knowledge Spillovers

Outcomes IND ROW

(a) Welfare

Static, log(C) 0.9971 0.9857

Dynamic, g 1.0063 1.0063

Total 1.0028 0.9965

(b) Upstream Innovation

Own-Stage Rate, θu 0.8463 1.0367

Cross-Stage Rate, ηu 0.4074 1.2181

Enrry Rate, eu 1.3213 0.9543

Average Quality, qu∗ 1 0.9232

(c) Downstream Innovation

Own-Stage Rate, θd 0.7874 1.0304

Cross-Stage Rate, ηd 0.8285 1.0099

Enrry Rate, ed 1.0511 1.0011

Average Quality, qd∗ 1 0.9420

Notes: This table lists outcomes in the counterfactual economy with no knowledge spillovers
on incumbent innovation, relative to the Baseline economy. Panel (a) reports the different
components of welfare changes. Panel (b) reports outcomes in the upstream stage. Panel (c)
reports outcomes in the downstream stage.
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Table 18: Knowledge Spillovers: Gains from Trade

With Spillovers Without Spillovers

Outcome Baseline Trade Free Trade Baseline Trade Free Trade

(a) Welfare

Static, C 1 0.9992 1 0.9997

Dynamic, g 1 1.1840 1 1.1880

Total 1 1.1133 1 1.1165

(b) Technology Gap

Upstream, qu∗ROW /q
u∗
IND 1 0.52 1 0.55

Downstream, qd∗ROW /q
d∗
IND 1 0.55 1 0.57

Notes: This table reports results from a trade liberalization counterfactual for 2 types of economies:
one with knowledge spillovers for incumbent innovation, and the other without knowledge spillovers for
incumbent innovation. The trade liberalization exercise here is going from the baseline level of tariffs
to zero tariffs (free trade). The outcomes for each type of economy are reported relative to the baseline
tariffs case. Panel (a) reports the different components of welfare changes. Panel (b) reports the change
in the equilibrium technology gaps between India and the rest of the world aggregate for the two states.

especially when compared to the contribution of entrant innovation to growth. However, it

is important to study incumbent innovation within a general equilibrium model in order to

understand the effect of a policy change on the equilibrium distribution of firm types, and the

resulting firm-dynamics. The next set of counterfactuals study exactly this.

5.2 Trade Policy: Aggregate Outcomes

I now move on to analyze the impact of trade policies on aggregate outcomes for the Indian

economy. Table 19 reports the main results. I conduct three policy experiments: (1) Autarky,

(2) Trade Protection where tariffs are increased by 5 percentage points for all, and (3) Trade

liberalization where tariffs are set at zero for all. Growth and welfare results go in expected

directions for all trade counterfactuals relative to the baseline tariffs case: welfare decreases in

Autarky, and when tariffs go up, and increase in a free trade equilibrium.

It is important to analyze the technology gaps between the two countries relative to the

baseline case. These counterfactuals show the importance of trade as a vehicle for technology

diffusion across countries. Increasing tariffs and reducing trade between countries reduces the

extent to which knowledge moves between the two countries. This results in a higher gap

between average qualities of ROW and India. In the baseline case, ROW was calibrated to have

twice the value of India in average quality (for both upstream and downstream). In the trade

protection counterfactual, this increase by more than 60%, resulting in ROW’s average quality

to be more than three times that of India. On the other hand, in the free trade equilibrium

average qualities of the two countries are close to equal. Trade liberalization implies faster

convergence between countries.
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Figure 5: Trade Policy: Firm Dynamics in India
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Notes:This figure plots the firm type distributions under the different trade policy counterfactuals relative to the Baseline
economy.
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Table 19: Trade Policy: Aggregate Outcomes in India

Outcome
Baseline

Autarky
Trade Trade

Trade Protection Liberalization

Growth 1 0.39 0.95 1.18

Welfare 1 0.62 0.98 1.10

(a) Upstream Outcomes

Technology Gap qu∗ROW /q
u∗
IND 1 - 1.63 0.52

Fraction Exporters 1 0.00 1.24 1.04

Cross-Stage Inn Rate, ηu 1 0.24 1.42 0.70

Own-Stage Inn Rate, θu 1 1 1 1

(b) Downstream Outcomes

Technology Gap, qd∗ROW /q
d∗
IND 1 - 1.67 0.55

Fraction Exporters 1 0.00 1.06 0.98

Cross-Stage Inn Rate, ηd 1 0.81 1.20 0.95

Own-Stage Inn Rate, θd 1 1 1 1

Notes: This table reports results from trade policy counterfactuals. All outcomes are relative
to the baseline level of tariffs. The trade policy experiments considered are: “Autarky” when
no country trades, “Trade Protection” where tariffs have been increased by 5 percentage points
across the board, and “Trade liberalization” where tariffs are zero across the board.

5.3 Trade Policy: Firm Dynamics

An interesting outcome of the adjustment of technology gaps across the different trade policy

counterfactuals is the impact of the said gaps on firm level outcomes. Surprisingly, in the trade

protection case the fraction of firms exporting from India increases in the BGP. This is a result

of an increase in the returns to cross-stage innovation for Indian firms from increased knowledge

diffusion from ROW. Increased gaps in average qualities leads to incumbent firms being able

to benefit from higher knowledge spillovers. Recall that the export cutoffs are a function of

the fixed costs of exporting net of the expected returns from innovation.47 In the free trade

equilibrium however this channel is muted as firms do not benefit from knowledge diffusion

with small technology gaps.48 Table 19 shows that aggregate outcomes matter for firm-level

outcomes.

Technology differences across countries also affect the equilibrium level of incumbent innova-

tion intensity. Increases in technology gaps in the trade protection equlibrium leads to a drastic

decrease in the cost of R&D.49 This results in more incumbent innovation in a world with higher

tariffs relative to the baseline economy. Conversely, because free trade leads to convergence in

technology levels across countries, the equilibrium level of incumbent innovation decreases in

47Refer to equations 50-51 in Proposition 2.
48Recall that only upstream firms benefit from cross-stage knowledge diffusion from exporting. Downstream

firms on the other hand experience knowledge spillovers from importing inputs. This is one of the reasons why
upstream exporting margin seems to respond a lot more than downstream to changes in equilibrium technology
gaps.

49Note that cost of all types of R&D decreases for India for both Upstream and downstream firms, unlike the
export margin adjustment which was particularly more important for upstream firms.
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BGP.

This leads me to come full circle and analyze the resulting firm type distributions from the

trade policy experiments. Figure 5 plots the distribution of firms into three bins: (1) single-

product, (2) multi-product but single-stage, and (3) multi-product and multi-stage. The figure

plots the share of each firm-type relative to the baseline economy. In Autarky, the share of multi-

stage producers falls by half compared to the baseline economy. This is a result of decreased

cross-stage innovation by incumbents due to two reasons. First, as firms cannot export in

Autarky they cannot invest in market specific innovation activity on foreign markets.50 Second,

closing off trade results in zero knowledge diffusion across countries thereby affecting the ability

of firms to take the opportunity to learn from foreign ideas.

The fraction of multi-stage producers in the trade liberalization counterfactual is close to

the Autarky case, also reduced by 50% relative to the baseline. Note that the same fraction

of firms end up being multi-stage even though firms now can invest in more cross-stage R&D

activity for all the markets. The decrease is a result of decrease technology gaps between India

and ROW resulting in lower incumbent innovation. Finally, in an economy that faces higher

tariffs compared to the baseline, the fraction of multi-stage firms increases by 50%. This result

is not surprising once we observe that the fraction of firms exporting, and the potential for

knowledge spillovers is high in the trade protection economy.

These results bring to light the importance of macro-level adjustments in general equilibrium

for quantifying and understanding micro-level firm dynamics in response to policy changes.

While it is tempting to conclude from my empirical evidence that trade liberalization will lead

to more incumbent cross-stage innovation, a general equilibrium analysis shows that it is not

necessarily the case. Note that this is a comparision across balanced growth path of the different

counterfactual economies, and does not speak to the effect of trade on firm dynamics along the

transition paths, which I will leave for future research.

6 Conclusion

I study the impact of international trade on product introduction within Indian manufacturing

firms. Diverging from most of the literature, I explore the possibility that plants learn about

new products from their buyers or sellers. This line of inquiry is motivated by the finding that

plants in India disproportionately produce products that are vertically linked to their previous

production sets compared to other unrelated products. This makes multi-product plants also

multi-stage plants, where they have integrated multiple production stages of a particular value

chain. I find evidence for plants introducing new downstream products in response to an

exogenous shock to downstream foreign technology access though exports.

I build a dynamic general equilibrium model with innovating firms in order to asses the

importance of foreign knowledge spillovers on growth and welfare, and to assess how firm-level

dynamics in response to a trade shock. Counterfactual analysis of the model calibrated to India

and a rest of the World aggregate shows that while the contribution of knowledge spillovers

on aggregate outcomes may be negligible, knowledge spillovers are important to explain the

50Recall that upstream firms in an open economy can invest in per-market cross-stage R&D for every market
they export to, and downstream firms can invest in per-market R&D for every market they import from.
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firm type distributions observed in the data. Trade policy counterfactuals show that incumbent

innovation levels due to knowledge spillovers increase during a protectionist policy, and decrease

during a liberalization policy. This is a result of technology gaps between countries, which

determines the extent of spillovers, diverging when tariffs increase, and converging when tariffs

decrease.

There are a number of paths worth exploring for future research. One major path forward is

to understand the factors that determine the set of products that multi-product plants produce.

This paper has shown that vertically related products are likely to be produced together, and

that these products are being sold outside of the plant for revenue generation. More detailed

analysis is required to understand what makes plants produce such vertically linked products.

In the quantitative analysis, the first extension to consider is to solve for the transition path

to analyze how firms adjust to changing economic conditions. Note that all my counterfactual

comparisons are comparisons along the balanced growth path. Another promising avenue for

future research is to extend the quantitative analysis to more countries. My current analysis is

restricted to only two countries. An case to study would be a three country model to analyze the

impact of a trade war between two countries on the third country. It would be most interesting

to analyze the flow of ideas and equilibrium technology differences in such a scenario.
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nal of International Economics, Vol. 110, pp. 87–102.

Aw, Bee Yan, Mark J Roberts, and Daniel Yi Xu (2011) “R&D investment, exporting, and

productivity dynamics,” American Economic Review, Vol. 101, No. 4, pp. 1312–44.

Barrientos, Stephanie, Peter Knorringa, Barbara Evers, Margareet Visser, and Maggie Opondo

(2016) “Shifting regional dynamics of global value chains: Implications for economic and social

upgrading in African horticulture,” Environment and Planning A: Economy and Space, Vol.

48, No. 7, pp. 1266–1283.

Bas, Maria and Caroline Paunov (2018) “Input-quality upgrading from trade liberalization:

Evidence on firm product growth and employment,” Unpublished manuscript.

52



Bernard, Andrew B, Emily J Blanchard, Ilke Van Beveren, and Hylke Vandenbussche (2019)

“Carry-along trade,” The Review of Economic Studies, Vol. 86, No. 2, pp. 526–563.

Bernard, Andrew B, Stephen J Redding, and Peter K Schott (2010) “Multiple-product firms

and product switching,” American Economic Review, Vol. 100, No. 1, pp. 70–97.

Bloom, Nicholas, Mirko Draca, and John Van Reenen (2016) “Trade induced technical change?

The impact of Chinese imports on innovation, IT and productivity,” The review of economic

studies, Vol. 83, No. 1, pp. 87–117.

Boehm, Johannes, Swati Dhingra, and John Morrow (2019) “The comparative advantage of

firms.”

(2020) “The comparative advantage of firms.”

Boehm, Johannes and Ezra Oberfield (2020) “Misallocation in the Market for Inputs: Enforce-

ment and the Organization of Production,” The Quarterly Journal of Economics, Vol. 135,

No. 4, pp. 2007–2058.

Broda, Christian and David E Weinstein (2006) “Globalization and the Gains from Variety,”

The Quarterly journal of economics, Vol. 121, No. 2, pp. 541–585.

Buera, Francisco J and Ezra Oberfield (2020) “The global diffusion of ideas,” Econometrica,

Vol. 88, No. 1, pp. 83–114.

Bustos, Paula (2011) “Trade liberalization, exports, and technology upgrading: Evidence on

the impact of MERCOSUR on Argentinian firms,” American economic review, Vol. 101, No.

1, pp. 304–40.

Cai, Jie, Nan Li, and Ana Maria Santacreu (2018) “Knowledge Diffusion, Trade and Innovation

across Countries and Sectors.”

Chor, Davin, Kalina Manova, and Zhihong Yu (2020) “Growing Like China: Firm Performance

and Global Production Line Position,” NBER Working Paper, No. w27795.

Coe, David T and Elhanan Helpman (1995) “International r&d spillovers,” European economic

review, Vol. 39, No. 5, pp. 859–887.

Costa, Carlos and Christopher Delgado (2019) “The Cashew Value Chain in Mozambique,”

Jobs Working Paper, World Bank, No. 32.

De Loecker, Jan (2013) “Detecting learning by exporting,” American Economic Journal: Mi-

croeconomics, Vol. 5, No. 3, pp. 1–21.

Ding, Xiang (2019) “Intangible Economies of Scope: Micro Evidence and Macro Implications.”

Eckel, Carsten and J Peter Neary (2010) “Multi-product firms and flexible manufacturing in

the global economy,” The Review of Economic Studies, Vol. 77, No. 1, pp. 188–217.

53



Fernandez-Stark, Karina, Stacey Frederick, and Gary Gereffi (2011) “The Apparel Global Value

Chain,” Duke Center on Globalization, Governance & Competitiveness.

Flach, Lisandra (2016) “Quality upgrading and price heterogeneity: Evidence from Brazilian

exporters,” Journal of International Economics, Vol. 102, pp. 282–290.

Gereffi, Gary (1999) “International trade and industrial upgrading in the apparel commodity

chain,” Journal of international economics, Vol. 48, No. 1, pp. 37–70.

Goldberg, Pinelopi Koujianou, Amit Kumar Khandelwal, Nina Pavcnik, and Petia Topalova

(2010) “Imported intermediate inputs and domestic product growth: Evidence from India,”

The Quarterly journal of economics, Vol. 125, No. 4, pp. 1727–1767.

Grossman, Gene M and Elhanan Helpman (1991) “Trade, knowledge spillovers, and growth,”

European economic review, Vol. 35, No. 2-3, pp. 517–526.

Grossman, Sanford J and Oliver D Hart (1986) “The costs and benefits of ownership: A theory

of vertical and lateral integration,” Journal of political economy, Vol. 94, No. 4, pp. 691–719.

Head, Keith and Thierry Mayer (2014) “Gravity equations: Workhorse, toolkit, and cookbook,”

in Handbook of international economics, Vol. 4, pp. 131–195: Elsevier.

Jovanovic, Boyan and Rafael Rob (1989) “The growth and diffusion of knowledge,” The Review

of Economic Studies, Vol. 56, No. 4, pp. 569–582.

Klette, Tor Jakob and Samuel Kortum (2004) “Innovating firms and aggregate innovation,”

Journal of political economy, Vol. 112, No. 5, pp. 986–1018.

Kortum, Samuel S (1997) “Research, patenting, and technological change,” Econometrica: Jour-

nal of the Econometric Society, pp. 1389–1419.

Lileeva, Alla and Daniel Trefler (2010) “Improved access to foreign markets raises plant-level

productivity. . . for some plants,” The Quarterly journal of economics, Vol. 125, No. 3, pp.

1051–1099.

Macchiavello, Rocco and Josepa Miquel-Florensa (2019) “Buyer-driven upgrading in gvcs: The

sustainable quality program in colombia.”

Medina, Pamela (2020) “Import competition, quality upgrading and exporting: Evidence from

the peruvian apparel industry,” Working Paper.

Melitz, Marc J (2003) “The impact of trade on intra-industry reallocations and aggregate in-

dustry productivity,” econometrica, Vol. 71, No. 6, pp. 1695–1725.

Nocke, Volker and Stephen Yeaple (2014) “Globalization and multiproduct firms,” International

Economic Review, Vol. 55, No. 4, pp. 993–1018.

Nunn, Nathan and Daniel Trefler (2008) “The boundaries of the multinational firm: an empirical

analysis,” The organization of firms in a global economy, pp. 55–83.

54



(2013) “Incomplete contracts and the boundaries of the multinational firm,” Journal

of Economic Behavior & Organization, Vol. 94, pp. 330–344.

Orr, Scott (2020) “Within-Firm Productivity Dispersion: Estimates and Implications,” Working

Paper.

Pavcnik, Nina (2002) “Trade liberalization, exit, and productivity improvements: Evidence

from Chilean plants,” The Review of Economic Studies, Vol. 69, No. 1, pp. 245–276.

Perla, Jesse and Christopher Tonetti (2014) “Equilibrium imitation and growth,” Journal of

Political Economy, Vol. 122, No. 1, pp. 52–76.

Perla, Jesse, Christopher Tonetti, and Michael E. Waugh (2019) “Equilibrium Technology Dif-

fusion, Trade, and Growth,” Working Paper 20881, National Bureau of Economic Research,

DOI: 10.3386/w20881.

Sampson, Thomas (2016) “Dynamic selection: an idea flows theory of entry, trade, and growth,”

The Quarterly Journal of Economics, Vol. 131, No. 1, pp. 315–380.

(2020) “Technology Transfer in Global Value Chains.”

Shu, Pian and Claudia Steinwender (2019) “The impact of trade liberalization on firm produc-

tivity and innovation,” Innovation Policy and the Economy, Vol. 19, No. 1, pp. 39–68.

Silva, JMC Santos and Silvana Tenreyro (2006) “The log of gravity,” The Review of Economics

and statistics, Vol. 88, No. 4, pp. 641–658.

Smarzynska Javorcik, Beata (2004) “Does foreign direct investment increase the productivity

of domestic firms? In search of spillovers through backward linkages,” American economic

review, Vol. 94, No. 3, pp. 605–627.

Sturgeon, Timothy J and Jo Van Biesebroeck (2011) “Global value chains in the automotive

industry: an enhanced role for developing countries,” International Journal of Technological

Learning, Innovation and Development, Vol. 4, No. 1, pp. 181–205.

Sturgeon, Timothy and Momoko Kawakami (2010) “Global value chains in the electronics indus-

try: was the crisis a window of opportunity for developing countries?” Global Value Chains

in a Postcrisis World, Washington, DC: The World Bank, pp. 245–301.

Topalova, Petia and Amit Khandelwal (2011) “Trade liberalization and firm productivity: The

case of India,” Review of economics and statistics, Vol. 93, No. 3, pp. 995–1009.

Trefler, Daniel (2004) “The long and short of the Canada-US free trade agreement,” American

Economic Review, Vol. 94, No. 4, pp. 870–895.

Verhoogen, Eric A (2008) “Trade, quality upgrading, and wage inequality in the Mexican man-

ufacturing sector,” The Quarterly Journal of Economics, Vol. 123, No. 2, pp. 489–530.

World Bank (2020) “World Development Report 2020: Trading for Development in the Age of

Global Value Chains,”Technical report, World Bank, Washington, DC.

55

http://dx.doi.org/10.3386/w20881


A Data Appendix

A.1 Annual Survey of Industries

Plants vs Firms The primary data for my empirical analysis is the Indian Annual Survey

of Industries (ASI). As mentioned in the main ext, the ASI mainly reports plant-level details,

and not firm level. However, the ASI does allow consolidated returns to be filed for two or

more establishments that operate in the same state, and within the same industry, belonging

to the same firm. For the purpose of my analysis, I treat all filed returns equally, and do not

distinguish between observations filed for more than one establishment. Hence, I use the terms

firms and plants interchangeably. While ASI does allow consolidated returns to be filed, there

is very little uptake. The ASI reports the total number of units within the firm in the country,

in the state (for some years), and the number of units the return is filed for. Table A20 shows

some summary statistics on the prevalence of such establishments in my final sample.

The incidence of observations that file consolidated returns is very small in the data, 6%

in all of my sample. This is despite there being a large fraction of plants that belong to firms

with multiple establishments within a state. The average number of establishments within a

multi-establishment firm in the country is close to 5.8, and within a state is 5.5., indicating that

multi-establishment plants mostly operate within a state.

Product Classification My sample includes data from 2001 to 2009, both years inclusive.

The product classification used by the ASI to report outputs produced and inputs used by the

plant remains fairly consistent over the years 2001-2009 (Annual Survey of Industries Commod-

ity Classification- ASICC at the 5-digit level), with a minor revision in 2008. I bring all data to

the first ASICC classification using product descriptions made available by the ASI. While data

for 2010-2012 is also available, there was a major revamp of the product classification starting

2010 (National Product Classification for Manufacturing Sector-NPCMS at the 7-digit level).

While the ASI does provide a concordance between the ASICC and the NPCMS, it is not a per-

fect one-to-one mapping. This results in the loss of product definition detail due to aggregation

required to bring ASICC and NPCMS into one consistent classification. Table A21 provides

details on the final number of product codes available after constructing crosswalks across all

classifications. As a finely defined product classification is key to my empirical analysis, I make

a sample choice that maximizes the number of clean observations, and hence I use only the data

from 2001-2009. Table A22 lists the broad 1-digit ASICC product groups used by the ASI.

Data Cleaning The main variables that require cleaning for my empirical analysis are the

input and output variables. The output products data is the main data used for the construction

of plant types, and in my regression analysis. The input data on the other hand is used for the

construction of the IO tables along with the output data. I start by collecting all year-plant

observations between 2001 and 2009, and the corresponding outputs and inputs reported by

them.

For the output data, I drop all products that are coded as miscellaneous(ASICC 2-digit

code 99) and service related items (ASICC 2-digit code 97). Similarly for input data I drop
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Table A20: Plants and Firms in the ASI

Part of a firm with Part of a firm with

Consolidated Returns > 1 plant in country > 1 plant in state

Year Obs. Share Avg. Plants Share Avg. Plants Share Avg. Plants

2001 22260 0.04 2.61 0.34 6.23 0.22 3.77

2002 23279 0.05 2.68 0.35 5.73 0.23 4.41

2003 28333 0.04 2.62 0.33 6.01 0.23 4.79

2004 20169 0.08 2.66 0.41 6.12 0.29 4.22

2005 22963 0.07 2.70 0.40 5.45 0.28 3.83

2006 24063 0.07 2.76 0.40 5.58 0.28 8.97

2007 18019 0.08 2.80 0.43 5.96 0.30 8.32

2008 15543 0.08 2.74 0.44 5.86

Total 174629 0.06 2.70 0.38 5.86 0.26 5.52

Notes: This table shows the incidence of observations that file consolidated returns (more than one
plant reporting), the incidence of observations that are part of a firm with more than one plant in
the country, and the incidence of plants that are part of a firm with more than one plant in the
state. the columns titled “Avg. Plants” is the average number of plants within the different types
of observations identified. Data for 2009 is not reported as observations from 2009 are not part of
my regression sample. Recall that my regression sample includes only those observations that have
at least future year observation. Since my sample ends in 2009, no data from 2009 is used in the
regressions. The ASI does not report information on multi-plant observations within a state from
2008 onwards.

Table A21: ASI Product Classifications

Years Classification # Codes

2001-2009 ASICC 6,176

2010-2012 NPCMS 6,182

Consistent Classification Over Years

2001-2012 ASICC–NPCMS 4,199

Table A22: ASICC Product Groups

Code Description

1 Animal, Vegetable, Horticulture, Forestry Products, Beverages, Tobacco & Pan Masala, and Non-Edible
Water/Spirit & Alcohol Chiefly Used in Industry

2 Ores, Minerals, Mineral Fuels, Lubricants, and Gas & Electricity

3 Chemical and Allied Products

4 Rubber, Plastic, Leather, and Products thereof

5 Wood, COrk, Thermocol & Paper, and Articles thereof

6 Textile and Textile Articles

7 Base Metals, Products Thereof, Machinery Equipment and Parts thereof, Excluding Transport Equipment

8 Railways, Airways, Ships & Road Surface Transport, ans Related Equipment and Parts

9 Other Manufacturing Articles and Services n.e.c
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any input products that are coded as miscellaneous, fuels, non-basic items, and service related

items. Further, I aggregate both domestic inputs and foreign inputs at the product code level

to get the total value of a given product used as an input at the plant level. Finally, I drop all

output and input observation within a plant that have zero or negative values reported. This

results in roughly 1% of year-plant-output observations and less than 0.1% of year-plant-input

observations from being dropped.

A.2 Trade Data

To construct my regressor and instrumental variables, I use imports and exports data from the

Base for International Trade Analysis (BACI) dataset from Centre d’Études Prospectives et

d’Informations Internationales (CEPII). BACI builds on trade data that is reported by countries

to the United Nations COMTRADE division, and develops a procedure that reconciles the data

reported by importers and exporters that may not coincide in the original data. I use the data

at the Harmonized System 1996 (HS96) classification of products.

I construct a crosswalk in order to bring the trade data which is reported in the 6-digit HS96

product classification to the 5-digit ASICC product classification. I make use of the fact that the

new Indian product classification NPCMS is built on the Central Product Classification version

2 (CPC2) deveped by the United Nations Statistics Division. The 7-digit NPCMS is made up

of the 5-digit CPC code plus a 2-digit Indian requirement. I first bring the 5-digit ASICC codes

to the 5-digit NPCMS using the crosswalk provided by the ASI. Note that the 5-digit nPCMS

codes are the same as CPC2 codes. I then bring these CPC2 codes to the Harmonized System

2007 version (HS07) product classification. Finally, I bring the 6-digit HS07 codes to the 6-digit

HS96 codes, which is the classification that the trade data is at.51

51http://www.csoisw.gov.in/cms/En/1027-npcms-national-product-classification-fo-rmanufacturing-sector.

aspx for ASICC to NPCMS concordance
https://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL&StrLanguageCode=EN&

IntCurrentPage=7 for CPC2 to HS07 concordance
https://wits.worldbank.org/product_concordance.html for HS07 to HS96 concordance
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A.3 Additional Regression Tables

Table A23: Knowledge Spillovers Over Time: Reduced Form Results

New Downstream Production, 1Dj,ω,t+s

(1) (2) (3) (4)

t+ 1 t+ 2 t+ 3 t+ 4

log(IVD
ω,t) 0.026*** 0.038*** 0.054*** 0.042**

(0.009) (0.011) (0.013) (0.020)

log(WorldDω,t) -0.007 -0.001 0.013 0.018

(0.007) (0.008) (0.015) (0.019)

Observations 127,059 100,320 76,939 58,637

R-squared 0.421 0.484 0.522 0.552

Notes: Standard errors are reported in parenthesis, and are clustered at

the 3-digit product code. * Significant at 10%, ** Significant at 5%, ***

Significant at 1%. All columns have the following controls: plant-product

revenue in each year, total number of products produced by the plant in

each year, year fixed effects, and plant-product fixed effects. All columns

report reduced form estimates for the instrumental variable (IV) strategy.

Indian export exposure measure, ExpDω,t, is instrumented by the import

demand IV defined in equation 8, IVDω,t.

Table A24: Knowledge Spillovers Over Time: First Stage Results

Export Exposure, log(ExpDω,t)

(1) (2) (3) (4)

t+ 1 t+ 2 t+ 3 t+ 4

log(IVD
ω,t) 0.545*** 0.665*** 0.693*** 0.604***

(0.116) (0.120) (0.132) (0.161)

log(WorldDω,t) -0.193 -0.350* -0.471* -0.721*

(0.189) (0.192) (0.246) (0.424)

Observations 127,059 100,320 76,939 58,637

R-squared 0.964 0.965 0.966 0.966

Notes: Standard errors are reported in parenthesis, and are clustered at

the 3-digit product code. * Significant at 10%, ** Significant at 5%, ***

Significant at 1%. All columns have the following controls: plant-product

revenue in each year, total number of products produced by the plant in

each year, year fixed effects, and plant-product fixed effects. All columns

report first stage estimates for the instrumental variable (IV) strategy.

Indian export exposure measure, ExpDω,t, is instrumented by the import

demand IV defined in equation 8, IVDω,t.
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Table A25: Effect of Un-weighted Exports on Downstream production

New Downstream Production, 1Dj,ω,t+s

(1) (2) (3) (4)

t+ 1 t+ 2 t+ 3 t+ 4

log(Expω,t) 0.025* 0.031* 0.071** 0.117

(0.014) (0.017) (0.032) (0.087)

log(WorldDω,t) 0.002 0.013 0.047* 0.091*

(0.006) (0.008) (0.027) (0.055)

Observations 127,059 100,320 76,939 58,637

F-stat 31.362 20.338 5.73 3.148

Notes: Standard errors are reported in parenthesis, and are clustered

at the 3-digit product code. * Significant at 10%, ** Significant at 5%,

*** Significant at 1%. All columns have the following controls: plant-

product revenue in each year, total number of products produced by the

plant in each year, year fixed effects, and plant-product fixed effects. All

columns report second stage estimates from instrumental variable (IV)

strategy. The main variable of interest, log(Expω,t) is simply the total

Indian exports to the rest of the world.

Table A26: Effect of Un-weighted Exports: Placebo Tests

New Upstream Production, 1Uj,ω,t+s New Unrelated Production, 1Oj,ω,t+s

(1) (2) (3) (4) (5) (6)

(t+1) (t+2) (t+3) (t+1) (t+2) (t+3)

log(Expω,t) 0.003 -0.006 -0.039** 0.008 0.043** -0.014

(0.016) (0.018) (0.020) (0.020) (0.021) (0.024)

log(WorldDω,t) 0.008 0.010 -0.008 -0.005 -0.002 0.005

(0.009) (0.011) (0.013) (0.013) (0.019) (0.018)

Observations 127,059 100,320 76,939 127,059 100,320 76,939

F-Stat 31.362 20.338 5.73 31.362 20.338 5.73

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-digit product code. *

Significant at 10%, ** Significant at 5%, *** Significant at 1%. All columns have the following controls:

plant-product revenue in each year, total number of products produced by the plant in each year, year

fixed effects, and plant-product fixed effects. All columns report second stage estimates from instrumental

variable (IV) strategy. The dependent variable in columns (1)-(3) is an indicator for the plant producing

a product upstream to it’s current product, and the dependent variable in columns (4)-(6) is an indicator

for the plant producing unrelated products in the IO table to its current product in a future year t+ s.

The main variable of interest, log(Expω,t) is simply the total Indian exports to the rest of the world.
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Table A27: New Downstream Products Revenue Shares Over Time

New Downstream Revenue Share, RevShDj,ω,t+s

(1) (2) (3) (4)

t+ 1 t+ 2 t+ 3 t+ 4

log(ExpDω,t) 0.023* 0.034** 0.043** 0.025

(0.014) (0.014) (0.017) (0.025)

log(WorldDω,t) -0.005 0.010 0.026 0.026*

(0.005) (0.010) (0.017) (0.013)

Observations 127,059 100,320 76,939 58,637

F-stat 22.044 30.565 27.509 14.104

Notes: Standard errors are reported in parenthesis, and are clustered at

the 3-digit product code. * Significant at 10%, ** Significant at 5%, ***

Significant at 1%. All columns have the following controls: plant-product

revenue in each year, total number of products produced by the plant in

each year, year fixed effects, and plant-product fixed effects. All columns

report second stage estimates from instrumental variable (IV) strategy.

Indian export exposure measure, ExpDω,t, is instrumented by the import

demand IV defined in equation 8, IVDω,t.

Table A28: New Products Revenue Shares Over Time: Placebo Tests

New Upstream Revenue Share, RevShUj,ω,t+s New Unrelated Revenue Share, RevShOj,ω,t+s

(1) (2) (3) (4) (5) (6)

(t+1) (t+2) (t+3) (t+1) (t+2) (t+3)

log(ExpDω,t) -0.000 -0.007 -0.022** -0.037* -0.027* -0.037**

(0.012) (0.011) (0.009) (0.021) (0.016) (0.016)

log(WorldDω,t) 0.003 0.007 -0.002 -0.017 -0.039** -0.036

(0.008) (0.008) (0.008) (0.014) (0.018) (0.023)

Observations 127,059 100,320 76,939 127,059 100,320 76,939

F-Stat 22.044 30.565 27.509 22.044 30.565 27.509

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-digit product code. * Significant at

10%, ** Significant at 5%, *** Significant at 1%. All columns have the following controls: plant-product revenue

in each year, total number of products produced by the plant in each year, year fixed effects, and plant-product

fixed effects. All columns report second stage estimates from instrumental variable (IV) strategy. The dependent

variable in columns (1)-(3) is a plant’s revenue share of all new products upstream to it’s current product, and

the dependent variable in columns (4)-(6) is a plant’s revenue share of all new unrelated products in the IO

table to its current product in a future year t+ s. Indian export exposure measure, ExpDω,t, is instrumented by

the import demand IV defined in equation 8, IVDω,t.
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Table A29: Total Number of New Downstream Products Over Time

New Downstream Production, ND
j,ω,t+s

(1) (2) (3) (4)

t+ 1 t+ 2 t+ 3 t+ 4

log(ExpDω,t) 0.060** 0.063*** 0.086*** 0.076*

(0.023) (0.020) (0.027) (0.044)

log(WorldDω,t) 0.005 0.023 0.059* 0.074**

(0.010) (0.015) (0.030) (0.032)

Observations 127,059 100,320 76,939 58,637

F-stat 22.044 30.565 27.509 14.104

Notes: Standard errors are reported in parenthesis, and are clustered at

the 3-digit product code. * Significant at 10%, ** Significant at 5%, ***

Significant at 1%. All columns have the following controls: plant-product

revenue in each year, total number of products produced by the plant in

each year, year fixed effects, and plant-product fixed effects. All columns

report second stage estimates from instrumental variable (IV) strategy.

Indian export exposure measure, ExpDω,t, is instrumented by the import

demand IV defined in equation 8, IVDω,t.

Table A30: Total Number of New Products Over Time: Placebo Tests

New Upstream Production, NU
j,ω,t+s New Unrelated Production, NO

j,ω,t+s

(1) (2) (3) (4) (5) (6)

(t+1) (t+2) (t+3) (t+1) (t+2) (t+3)

log(ExpDω,t) 0.001 -0.013 -0.028* -0.025 -0.019 -0.031

(0.017) (0.017) (0.015) (0.033) (0.034) (0.036)

log(WorldDω,t) 0.007 0.009 -0.003 -0.006 0.003 -0.002

(0.009) (0.011) (0.011) (0.020) (0.025) (0.032)

Observations 127,059 100,320 76,939 127,059 100,320 76,939

F-Stat 22.044 30.565 27.509 22.044 30.565 27.509

Notes: Standard errors are reported in parenthesis, and are clustered at the 3-digit product code.

* Significant at 10%, ** Significant at 5%, *** Significant at 1%. All columns have the following

controls: plant-product revenue in each year, total number of products produced by the plant in each

year, year fixed effects, and plant-product fixed effects. All columns report second stage estimates from

instrumental variable (IV) strategy. The dependent variable in columns (1)-(3) is a plant’s total number

of new products upstream to it’s current product, and the dependent variable in columns (4)-(6) is a

plant’s total number of new unrelated products in the IO table to its current product in a future year

t + s. Indian export exposure measure, ExpDω,t, is instrumented by the import demand IV defined in

equation 8, IVDω,t.
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B Model Appendix

B.1 Laws of Motion

This section outlines the derivations for the laws of motion for the mass of varieties and quality

distributions in equations 41 and 42. I start by discretizing time into small intervals ∆. The

mass of varieties that has quality less that qs at time t + ∆ is given by equation 39, which i

start with:

M s
n(t+∆)G

s
n(t+∆)(q

s) =


M s
nt

[
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]

+
(

∆θsnM
s
nt + ∆ηsnM

s′
nt

) [
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]

+ (∆Esnt −∆δM s
nt)
[
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]
 (62)

Let’s define the total rate of innovation/new varieties of stage s entering the market by: ∆Zsnt =

∆θsnM
s
nt + ∆ηsnM

s′
nt + ∆Esnt. To get total mass of varieties, I first take limit as qs → ∞, and

then taking the limit as ∆→ 0:

lim
qs→∞

M s
n(t+∆)G

s
n(t+∆)(q

s) = lim
qs→∞

(M s
nt + ∆Zsnt −∆δ)

[
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]

M s
n(t+∆) = (M s

nt + ∆Zsnt −∆δM s
nt)
[
1−Gsnt(qs∗nn(t+∆))

]
(63)

where Gsnt(∞) = 1. Rearranging terms in the above equation and taking limit as ∆ → 0, one

gets:

lim
∆→0

M s
n(t+∆) −M

s
nt

∆
= lim

∆→0
(Zsnt − δM s

nt)
[
1−Gsnt(qs∗nn(t+∆))

]
−M s

nt

Gsnt(q
s∗
nn(t+∆))

∆

Given that Gsnt(q
s∗
nnt) = 0, as qs∗nt is the lowest quality of incumbent varieties, defined by market

entry thresholds, I can rewrite:

lim
∆→0
−
Gsnt(q

s∗
nn(t+∆))

∆
= lim

∆→0

(
Gsnt(q

s∗
nnt)−Gsnt(qs∗nn(t+∆))

qs∗nn(t+∆) − q
s∗
nnt

)(
qs∗nn(t+∆) − q

s∗
nnt

∆

)

=
∂Gsnt(q

s∗
nn)

∂qs
dqs∗nnt
dt

= δs∗nt (Endogeneous exit rate)

The endogeneous exit rate of varieties is given a combination of how quickly the threshold

quality increases and the density of varieties at the threshold that drop out. The limit of the

mass of functions is then given by:

dM s
nt

dt
= Zsnt − δM s

nt − δs∗ntM s
nt

Defining Ṁ s
nt = dM s

nt/dt, dividing by total mass M s
nt and substituting for Zsnt, gives us the law

of motion for mass of varieties:

Ṁ s
nt

M s
nt

= θsn + ηsn
M s′
nt

M s
nt

+
Esnt
M s
nt

− δ − δs∗nt (64)
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In a balanced growth path, the mass of varieties remains constant, i.e. Ṁ s
nt = 1. Then, we can

solve for the the BGP mass entrants. Intuitively, in a BGP, the mass of new varieties discovered

should be equal tot he mass of old varieties that die.

Esnt = (δ + δs∗nt)M
s
nt − θsnM s

nt − ηsnM s′
nt (65)

To derive the law of motion for the quality distributions, Gsnt(q
s), I start by substituting

equation 63 into equation 62:

(M s
nt + ∆Zsnt −∆δM s

nt)
[
1−Gsnt(qs∗nn(t+∆))

]
Gsn(t+∆)(q

s) = (M s
nt + ∆Zsnt −∆δ)

[
Gsnt(q

s)−Gsnt(qs∗nn(t+∆))
]

Gsnt(q
s)−Gsn(t+∆)(q

s) = Gsnt(q
s∗
nn(t+∆))

(
1−Gsn(t+∆)(q

s)
)

Dividing both sides by ∆ and taking limit as ∆→ 0:

lim
∆→0

Gsnt(q
s)−Gsn(t+∆)(q

s)

∆
= lim

∆→0

Gsnt(q
s∗
nn(t+∆))

∆

(
1−Gsn(t+∆)(q

s)
)

∂Gsnt(q
s)

∂t
= −δs∗nt (1−Gsnt(qs)) (66)

where I have substituted for the endogeneous exit rate derived earlier. This ends the derivation

of the laws of motion for the mass of varieties and the quality distributions.

B.2 Proof of Proposition 1: Stationary Quality Distribution

The law of motion for quality distributions is given by equation 42:

∂Gsnt(q
s)

∂t
= −δs∗nt [1−Gsnt(qs)]

As shown in Perla et al. (2019), the solution to this partial differential equation is given by:

∂Gsnt(q)/∂q
s =

∂Gsn0(q)/∂qs

1−Gsn0 (qs∗nnt)
for qs ≥ qs∗nnt

=⇒ Gsnt(q
s) =

Gsn0(qs)−Gsn0 (qs∗nnt)

1−Gsn0 (qs∗nnt)
for qs ≥ qs∗nnt (67)

Under assumption 1, which states that the initial distribution at time 0 is Pareto: Gsn0(qs) =

1 −
(

qs

qs∗nn0

)−γs
, we can now show that the distribution at any instance in time is also Pareto.

Substituting for the initial distribution in equation 67, we get,

Gsnt(q
s) =

(
1−

(
qs

qs∗nn0

)−γs)
−
(

1−
(
qs∗nnt
qs∗nn0

)−γs)
1−

(
1−

(
qs∗nnt
qs∗nn0

)−γs) for qs ≥ qs∗nnt

Gsnt(q
s) = 1−

(
qs

qs∗nnt

)−γs
for qs ≥ qs∗nnt (68)

which is a Pareto distribution with the minimum bound equal to the entry threshold. Note also
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that this law of motion preserves the shape of the initial distribution, γs.

B.3 Market Clearing Conditions

Before writing down the labor market and goods market clearing conditions, it is useful to

derive labor demand from different economic activities in the economy. Labor is used for

production, market access, and R&D activities by both entrants and incumbents. I will derive

labor demand expressions under proposition 1, which results in quality distributions in all stages

of production and in all countries to be Pareto. Cobb-Douglas production function technologies

faced by upstream and downstream producers results in labor cost being a constant share of

total production costs. Let Xs
n be the total expenditure on stage-s goods by country n. Then,

wnL
P
n =

∑
s

βls︸︷︷︸
Labor share

in total expenditure

εs︸︷︷︸
Expenditure share

in total revenue

∑
l

λsnlX
s
l︸ ︷︷ ︸

Demand for stage-s
goods from country l

= Revenue

where εs = (σs)− 1)/σs. Labor used for market access is the sum of market access costs for all

products that supply to different markets. Note that under Pareto distributions, and quality

cutoffs for different markets, qs∗nl , the share of products that are supplied from market n to

market l is given by:
(
qs∗nl
qs∗nn

)−γs
. Then total labor expenditure on market access is given by:

wnL
MA
n =

∑
s

M s
n

∑
l

(
qs∗nl
qs∗nn

)−γs
f snlwn

Finally labor expenditure used for R&D by entrants and incumbents is given by:

wnL
RD
n =

∑
s

Esnf
s
newn︸ ︷︷ ︸

Entrant R&D

+
∑
s

M s
nR

s
n,θ(θ

s
n)︸ ︷︷ ︸

Owns-Stage R&D

+Mu
n

∑
l

(
qu∗nl
qu∗nn

)−γu
Rdnl,η(η

d
nl)︸ ︷︷ ︸

Cross-Stage R&D
Upstream

+ Md
n

∑
l

Runl,η(η
u
nl)︸ ︷︷ ︸

Cross-Stage R&D
Downstream

Note that, only exporters in upstream stage can benefit from cross-stage R&D from other

markets, while all firms in the downstrema market can invest in all market-specific cross-stage

R&D. We are now equipped to write the labor market clearing condition:

wnLn = wnL
P
n + wnL

MA
n + wnL

RD
n (69)

Goods market clearing for upstream stage is given by the following:

Xu
n = βudεd

∑
l

λdnlX
d
l (70)

This follows similar logic to the labor demand for production activities. Total expenditure spent

on upstream goods in country n depends on the share of upstream input used in the production
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of downstream goods. The amount of downstream goods produced in country n further depends

on the demand for downstream varieties from all countries. In the case of single industry, J = 1,

final good is produced by only the single downstream output. Therefore, the demand faced by

downstream varieties is equal to the demand faced by the final good produced in the country,

which is consumption demand and material input demand. Therefore,

Xd
n =

∑
s

βfsεs
∑
l

λsnlX
s
l︸ ︷︷ ︸

Material input demand

+ In︸︷︷︸
Consumption demand

= HH Income

(71)

where In is household income that is completely spent on consumption. Since households in this

model own firms, they receive profits from production activities, but also have to bear the cost

of investment and operation of firms. Therefore household income is the sum of labor income

and firm profits, and minus the firm costs:

In = wnLn︸ ︷︷ ︸
Labor income

+
∑
s

(1− εs)
∑
l

λsnlX
s
l︸ ︷︷ ︸

Firm profits

−
(
wnL

MA
n + wnL

RD
n

)︸ ︷︷ ︸
Firm costs

B.4 Proof of Proposition 2: Balanced Growth Path Outcomes

In this subsection, I will solve for all BGP variables listed in proposition 2. Starting from

the incumbent firm value function defined in 34, and suppressing time subscripts to reduce

notation:52

rnVn

(
Qu, Qd

)
− V̇n

(
Qu, Qd

)

= max
{Iunl(q

u)}Qu,l
{Idnl(q

d)}
Qd,l

θun≥0, θdn≥0

{ηdnl}l≥0, {ηunl}l≥0

∑
s∈{u,d}

∑
qs∈Qs



∑
l I
s
nl(q

s) [πsnlq
s − fsnlwn]

+Isnn(qs)δ
[
Vn

(
{Qs \ qs} , Qs′

)
− Vn

(
Qs, Qs

′
)]

+Isnn(qs)θsn

[∫
Vn

(
{Qs, zs} , Qs′

)
dGsn (zs)− Vn

(
Qs, Qs

′
)]

−Isnn(qs)Rsn,θ (θsn)wn


+
∑
qu∈Qu


∑

l I
u
nl(q

u)ηdnl

[∫
Vn

(
Qu,

{
Qd, zd

})
dGdn

(
zd
)
− Vn

(
Qu, Qd

)]
−
∑

l I
u
nl(q

u)Rdnl,η
(
ηdnl
)
wn


+
∑
qd∈Qd

Idnn(qs)
∑

l η
u
nl

[∫
Vn

(
{Qu, zu} , Qd

)
dGun (zu)− Vn

(
Qu, Qd

)]
−Idnn(qd)

∑
lR

u
nl,η (ηunl)wn


(72)

52Note that the following variables are still time dependent in the BGP: Vnt(), I
s
nlt(), π̄

s
nlt, wnt, θ

s
nt, η

s
nlt, G

s
nt().
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I start by conjecturing that the BGP value function of incumbents takes the following form:

Vn

(
Qu, Qd

)
=

∑
s∈{u,d}

∑
qs∈Qs

V s
n (qs)

=
∑

s∈{u,d}

∑
qs∈Qs

∑
l

I
s
nl(q

s)vsnl(q
s) (73)

where vsnl(q
s) is a origin-destination pair specific value of operating a stage s product of quality

qs. The above equation states that the total value of an incumbent firm in the BGP is simply the

sum of values of all products that the incumbent owns, and further the value of each product is

simply the sum of values received from all destinations that the product is sold to. Substituting

equation 73 into the incumbent value function 72 on the right hand side, we can simplify the

value of a new innovation that the firm receives. The change in the value function of the firm

when it adds a new product of quality zs is given by:∫
Vn

(
{Qs, zs} , Qs′

)
dGsn (zs)− Vn

(
Qs, Qs

′
)

=

∫ (
Vn

(
Qs, Qs

′
)

+ V s
n (zs)

)
dGsn (zs)− Vn

(
Qs, Qs

′
)

=

∫
V s
n (zs)dGsn (zs)

= fsnewn = χsn,e
q̄sn
q̃sn
wn (74)

where the last equality follows from the free entry condition under positive entry, equation 37.

Therefore, the return to an innovation and adding a new product in stage s is simply the value

of an entrant firm in stage s.

B.4.1 Optimal Innovation Intensity

In order to solve the incumbent firm’s problem, I start by solving the inner most loops in the firm

value function, and then solve for the outer-most decisions. In this case, I solve for the optimal

innovation intensities conditional on market entry decisions being positive, i.e. Isnl(q
s) = 1.

Then, given the return from supplying to a market both from static profits and innovation

returns, and the cost of supplying to that market, I solve for optimal entry-exit decisions. To

solve for the optimal innovation intensity of an incumbent firm for both own-stage and cross-

stage, I substitute the return to adding a product into the firm portfolio, equation 74 into the

firm problem, equation 72. Let’s start with the per-product R&D problem faced by the firm

for own-stage innovation, conditional on the product being produced, i.e. Isnn(qs) = 1:

max
θsn≥0

θsn

[∫
Vn

(
{Qs, zs} , Qs′

)
dGsn (zs)− Vn

(
Qs, Qs

′
)]
− χsn,θ (θsn)ψ

(
q̄sn
q̃sn

)ν
wn

= max
θsn≥0

θsnχ
s
n,e

(
q̄sn
q̃sn

)ν
wn − χsn,θ (θsn)ψ

(
q̄sn
q̃sn

)ν
wn

The own-stage innovation intensity is given by:

θsn =

(
χsn,e
ψχsn,θ

) 1
ψ−1

(75)
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Notice that the innovation intensity independent of the product that gives the firm the option to

conduct own-stage R&D, qs. Therefore, every incumbent that owns a product in stage s invests

the same amount of resources, and receives new ideas at the same Poisson rate. It is useful

to solve for the net return from own-stage innovation to solve for market entry-exit decisions

later on. The net return is given by the expected return from innovation minus the cost of

R&D at the optimal innovation intensity level. Notice that, from equation 75, one can write:

χsn,e = ψχsn,θ (θsn)ψ−1. Substituting this in to the net return equation, one gets:

θsnχ
s
n,e

(
q̄sn
q̃sn

)ν
wn − χsn,θ (θsn)ψ

(
q̄sn
q̃sn

)ν
wn

= ψχsn,θ (θsn)ψ
(
q̄sn
q̃sn

)ν
wn − χsn,θ (θsn)ψ

(
q̄sn
q̃sn

)ν
wn

= (ψ − 1)Rsn,θ(θ
s
n)wn (76)

where Rsn,θ(θ
s
n) is the cost of doing own-stage R&D. Therefore, the return to conducting R&D

is proportional to the cost of R&D.

Similarly, one can solve the per-product per-market cross-stage R&D problem that an in-

cumbent faces, conditional on the product being supplied to each market in case of an upstream

product, Iunl(q
u) = 1, and the product being produced in the domestic market in case of a down-

stream product Idnn(qd) = 1,

max
ηsnl≥0

ηsnl

[∫
Vn

(
{Qs, zs} , Qs′

)
dGsn (zs)− Vn

(
Qs, Qs

′
)]
− χsn,η (ηsnl)

ψ

(
q̄sn
q̂snl

)ν
wn

= max
ηsnl≥0

ηsnlχ
s
n,e

(
q̄sn
q̃sn

)ν
wn − χsn,η (ηsnl)

ψ

(
q̄sn
q̂snl

)ν
wn

The cross-stage innovation intensity per-product and per-market is given by:

ηsnl =

(
χsn,e
ψχsn,η

(
q̂snl
q̃sn

)ν) 1
ψ−1

(77)

and the net return of this cross-stage R&D activity is:

ηsnlχ
s
n,e

(
q̄sn
q̃sn

)ν
wn − χsn,η (ηsnl)

ψ

(
q̄sn
q̂snl

)ν
wn = (ψ − 1)Rsn,η(η

s
nl)wn (78)

B.4.2 Optimal Market Entry Decision

Given the innovation intensity of own-stage and cross-stage R&D, we can now focus on the outer

loop of the firm’s problem, which markets to supply to. The firm’s problem once innovation

decisions are internalized can be simplified as follows:
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rnVn

(
Qu, Qd

)
− V̇n

(
Qu, Qd

)
= max
{Iunl(q

u)}Qu,l
{Idnl(q

d)}
Qd,l

∑
s∈{u,d}

∑
qs∈Qs


∑

l I
s
nl(q

s) [πsnlq
s − fsnlwn]

−Isnn(qs)δV s
n (qs)

+Isnn(qs) (ψ − 1)Rsn,θ(θ
s
n)wn


+
∑
qu∈Qu

{ ∑
l I
u
nl(q

u) (ψ − 1)Rdn,η(η
d
nl)wn

}
+
∑
qd∈Qd

{
I
d
nn(qd)

∑
l (ψ − 1)Run,η(η

u
nl)wn

}
Rearranging terms, we get:

(rn + δ)Vn

(
Qu, Qd

)
− V̇n

(
Qu, Qd

)
= max
{Iunl(q

u)}Qu,l
{Idnl(q

d)}
Qd,l

∑
qu∈Qu

{
I
u
nn(qu)

[
πunnq

u − funnwn + (ψ − 1)Run,θ(θ
u
n)wn + (ψ − 1)Rdn,η(η

d
nn)wn

]
∑

l 6=n I
u
nl(q

u)
[
πunlq

u − funlwn + (ψ − 1)Rdn,η(η
d
nl)wn

] }

∑
qd∈Qd

{
I
d
nn(qd)

[
πdnnq

d − fdnnwn + (ψ − 1)Rdn,θ(θ
d
n)wn +

∑
l (ψ − 1)Run,η(η

u
nl)wn

]
∑

l 6=n I
d
nl(q

d)
[
πdnlq

d − fdnlwn
] }

(79)

One can now easily solve for market entry decisions faced by the incumbent, Isnl(q
s). The

variable profits made by each product in each market is proportional to its quality and the

return to R&D is a constant in terms of labor. Therefore, every product that has a high enough

quality to make up for the fixed cost of market entry is supplied to the market. Defining net

fixed costs as the value of fixed cost of entry to a market minus the fixed return to R&D from

entering that market as:

Upstream: f̃unl =

funn − (ψ − 1)Run,θ (θun)− (ψ − 1)Rdn,η
(
ηdnn
)

if l = n

funl − (ψ − 1)Rdn,η
(
ηdnl
)

if l 6= n

Downstream: f̃dnl =

fdnn − (ψ − 1)Rdn,θ
(
θdn
)
− (ψ − 1)

∑
lR

u
n,η (ηunl) if l = n

fdnl if l 6= n

(80)

One can now solve for the optimal market entry decisions as:

I
s
nl(q

s) =

1 if qs ≥ qs∗nl
0 if qs < qs∗nl

qs∗nl =
f̃snlwn
π̄snl

(81)

B.4.3 Incumbent Value Function

Given the structure of value function defined in equation 73 and optimal firm level decisions

pertaining investment in R&D activities detailed in equations 75 and 77, and optimal market

entry decisions for each product detailed in equation 81, the incumbent problem can further be
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simplified as:∑
s∈{u,d}

∑
qs∈Qs

∑
l

I
s
nl(q

s) [(rn + δ)vsnl(q
s)− v̇snl(qs)] =

∑
s∈{u,d}

∑
qs∈Qs

∑
l

I
s
nl(q

s)
[
π̄snlq

s − f̃snlwn
]
(82)

For the rest of this subsection, I will focus only on the market pair (nl) terms and derive

the value function in a BGP. It is useful to normalize the value function so it is constant on

the BGP. I normalize by the value function of a country by the wage of that country wn, and

define the following transformed functions and variables, that are constant on the BGP:

q̂s = qs/qs∗nn

Î
s
nl(q̂

s) = I
s
nl(q

s)

ˆ̄πsnl = π̄snlq
s∗
nn/wn

v̂snl(q̂
s) = vsnl(q

s)/wn

The normalized market pair level value function is given by dividing both sides of equation 82

by wn, and separating the market pair terms:

(rn + δ)v̂snl(q̂
s)−

v̇snl(q
s)

wn
= ˆ̄πsnlq̂

s − f̃snl (83)

Recall that terms in the above equation are all time dependent. Recognizing that the threshold

quality grows at a constant rate in the BGP: dqs∗nn/dt
qs∗nn

= gsn, and wage grows at a constant rate

in BGP: dwn/dt
wn

= gwn , one can derive the time derivation of the value function as following:

v̇snl(q
s) =

d

dt
(v̂snl(q̂

s)wn)

= wn

[
∂v̂snl(q̂

s)

∂t
− q̂sgsn

∂v̂snl(q̂
s)

∂q̂s
+ gwn v̂

s
nl(q̂

s)

]
(84)

In the BGP, the normalized value function is time-invariant, and hence the first term in equation

84 is zero. Substituting equation 84 into equation 83, we get:

(rn + δ − gwn)v̂snl(q̂
s) + q̂sgsn

∂v̂snl(q̂
s)

∂q̂s
= ˆ̄πsnlq̂

s − f̃snl

κsn (q̂s)κ
s
n−1 v̂snl(q̂

s) + (q̂s)κ
s
n
∂v̂snl(q̂

s)

∂q̂s
= ˆ̄πsnl (q̂

s)κ
s
n − f̃snl (q̂s)

κsn−1

d

dq̂s

(
(q̂s)κ

s
n v̂snl(q̂

s)
)

= ˆ̄πsnl (q̂
s)κ

s
n − f̃snl (q̂s)

κsn−1 (85)

where κsn = rn+δ−gwn
gsn

, and the second line is a result of multiplying both sides of the equation

by (q̂s)κ
s
n

gsn
. Under assumption 2, the solution to the the differential equation in equation 85 is

given by (after re-normalizing):

vsnl(q
s) =

(
π̄snlq

s

gsn(κsn + 1)
−
f̃snlwn
gsnκ

s
n

)
−

(
π̄snlq

s∗
nl

gsn(κsn + 1)
−
f̃snlwn
gsnκ

s
n

)(
qs

qs∗nl

)−κsn
(86)
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B.5 Prices and Trade Shares

In this subsection, I will derive closed form solutions for the price index and the trade shares

when quality distributions follows Pareto. From the expression for the stage-specific price index

in equation 15, the equilibrium prices charged in each market from equation 24, and the Pareto

distribution of qualities specified in equation 44 we have:

P sn =

∑
l∈N

∫
ωs∈Ωjsln

qsl (ω
s) (psln(ωs))1−σs dωs


1

1−σs

=

∑
l∈N

M s
l (psln)1−σs

∞∫
qs∗ln

qsdGsl (q
s)


1

1−σs

=

[∑
l∈N

M s
l (psln)1−σs

(
qs∗ln
qs∗nn

)−γs γs

γs − 1
qs∗ln

] 1
1−σs

=

(
σs

σs − 1

)(
γs

γs − 1

) 1
1−σs

[∑
l∈N

M s
l (qs∗ll )γ

s

(qs∗ln )1−γs (τ slnc
s
l )

1−σs
] 1

1−σs

(87)

Import shares are defined as λsln =
Xs
ln∑
lX

s
ln

, where Xs
ln is the value of expenditure by country

n spent on stage s goods from country l, and is defined in equation 27. Using this expression

for import expenditures, and substituting for market pair specific profits in equation 25, we get,

Xs
ln = σsπslnM

s
l

∞∫
qs∗ln

qsdGsl (q
s)

= Y s
n (P sn)σ

s

(psln)1−σsM s
l

(
qs∗ln
qs∗nn

)−γs γs

γs − 1
qs∗ln

∝M s
l (qs∗ll )γ

s

(qs∗ln )1−γs (τ slnc
s
l )

1−σs

It is useful to derive the export thresholds qs∗ln in terms of only domestic entry thresholds. From

the expression for market thresholds in equation 81 and market pair specific profits in equation

25, we have:

qs∗ln
qs∗nn

=
f̃slnwl

f̃snnwn

π̄snn
π̄sln

=
f̃slnwl

f̃snnwn

(
τ slnc

s
l

τ snnc
s
n

)σs−1

Using this expression for qs∗ln in the expression for import values, we have,

Xs
ln ∝M s

l (qs∗ll )γ
s
(
f̃slnwl

)1−γs
(τ slnc

s
l )

(1−σs)γs
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Trade shares can then be written as:

λsln =
M s
l (qs∗ll )γ

s
(
f̃slnwl

)1−γs
(τ slnc

s
l )

(1−σs)γs

∑
l′M

s
l′
(
qs∗l′l′
)γs (

f̃sl′nwl′
)1−γs (

τ sl′nc
s
l′
)(1−σs)γs (88)

B.6 Proof of Proposition 3: Growth

Given the BGP value functions from proposition 2, we can now derive the BGP growth rate of

the minimum threshold of the stage-specific quality distributions from the free entry condition

defined in equation 37. We have:

f snewnt =

∞∫
qs∗nn

Vnt({qs}, ∅)dGsnt(qs) =

∞∫
qs∗nn

∑
l

I
s
nl(q

s)vsnl(q
s)dGsnt(q

s)

=
∑
l

∞∫
qs∗nl

(
π̄snlq

s

gsn(κsn + 1)
−
f̃snlwn
gsnκ

s
n

)
−

(
π̄snlq

s∗
nl

gsn(κsn + 1)
−
f̃snlwn
gsnκ

s
n

)(
qs

qs∗nl

)−κsn
dGsnt(q

s)

Using the stationary Pareto distribution from proposition 1, and the observation that π̄snlq
s∗
nl =

f̃snlwn, one can derive a closed form solution to the above integral.

f sne =
1

gsn(γs − 1)(γs + κsn)

∑
l

(
qs∗nl
qs∗nn

)−γs
f̃snl (89)

Note that terms inside κsn can be simplified further. From the Euler equation, we have gCn +

gPn = rn−ρ where gCn = Ċn/Cn is the growth rate of consumption per-capita, and gPn = Ṗn/Pn

is the growth rate of the final good price index. Further, aggregate income in the economy should

equal final consumption, and in a BGP, it has to be the case that the share of labor income in

aggregate income is constant. Therefore, wnLn
CnPn

is constant in BGP. Since labor does not grow

in this model, the growth rate of wages should be equal to the growth rate of consumption

plus price: gwn = gCn + gPn . Therefore, from the Euler equation and BGP labor income share

condition we have, rn − gwn = ρ. Substituting this into the expression for κsn, we can write

κsn = δ+ρ
gsn

. Using this expression in equation 89 and rearranging terms, we have:

gsn =
1

γs(γs − 1)

∑
l

(
qs∗nl
qs∗nn

)−γs ( f̃ snl
f sne

)
− δ + ρ

γs
(90)

In a world with knowledge spillovers, we have gsn ≡ gs. That is, for a given stage s all

countries grow at the same rate since entrants from every country benefit from knowledge from

every other country.
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B.7 Output Growth

Now that we have the growth rate of average qualities of each stage,53 it is useful to derive

the growth rate of the stage-specific output. As mentioned in the previous subsection, on a

balanced growth path, labor income is a constant share of total income in the economy, which

gives us: gwn = gCn +gPn . Further, on the BGP, it should also be true that final consumption is

a constant share of final good produced.54 Given this, the growth rate of consumption should be

equal to the growthrate of final good: gCn = gYn . Combining these two observations regarding

the BGP, we have:

gYn = gwn − gPn (91)

Note that the price of final good is the Cobb-Douglas aggregate of downstream price indices

of all industries as defined in 13. From here on, for conciseness I solve for the economy wide

growth rates in a world with single industry J = 1. The derivation for the multiple industry

case follows a similar path. In a single industry case, the price index of the final good is just

the price of the downstream stage output, gP dn :

gPn = gP dn (92)

I will now use the closed form expression for stage-specific price index derived in equation

87. Taking the time derivative of this equation gives us the relationship between the growth

rate of price index gP sn , growth rate of average quality gsn, and the growth rate of unit costs gcsn
of a stage in an economy. Note that, on a BGP, both domestic entry cutoffs qs∗nn and exports

entry cutoffs qs∗nl have to grow at the same rate gs. Also on the BGP, the mass of varieties is

constant. With these observations, we can see from the price index equation that:

gP sn = gcsl − g
s/(σs − 1) ∀ l (93)

Since this equation has to hold for all origin countries l, it has to be true that the right hand side

of equation 93 is equalized across all countries, leading to gcsn = gcs . Given that the growth rate

of unit cost, and average qualities are only stage-specific and not country-specific, the growth

rates of stage-specific price index also equalizes across all countries. Therefore, equation 93

simplifies to:

gP s = gcs − gs/(σs − 1) (94)

Further, the price index of final good, from equation 92 also equalizes across countries: gPn =

gP d .

From the expressions for stage-specific unit cost of production in equations 18 and 21, we can

53Note that average quality is proportional to the minimum threshold quality of the Pareto distribution.
Therefore, the growth rate of average quality is equal to gs

54Note that final good is used for both final consumption and as a material input into other production
activities.
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derive the growth rate of unit cost as a function of growth rate of other prices in the economy:

gcsn = βlsgwn + βfsgPn + βusgPun

gcs = βlsgwn + βfsgP d + βusgPu ∀ n (95)

The second line follows from the discussion above.55 Equation 95, one can see that the growth

rate of wages have to equalize across countries for the equation to hold for unit costs in all

countries. Therefore, we have the growth rate of stage-specific unit costs to be given by:

gcs = βlsgw + βfsgP d + βusgPu .

Let ḡs = gs/(σs − 1). Substituting equation 93 for both stages into equation 95, and using

the fact that βls = 1− βfs − βus, we get:

gcs − gw = βus(gcu − gw) + βfs(gcs − gw)− βusgu/(σu − 1)− βfsgd/(σd − 1)

In matrix form:(
gcu − gw
gcd − gw

)
=

(
βuu βfu

βud βfd

)(
gcu − gw
gcd − gw

)
−

(
βuu βfu

βud βfd

)(
1/(σu − 1) 0

0 1/(σd − 1)

)(
gu

gd

)

(gcs − gw) = B(gcs − gw)−BSgs

(gcs − gw) = − (I−B)−1 BSgs (96)

From the goods market clearing condition, we have that expenditures on upstream output

depend on expenditures on downstream output, which further depends on the expenditures on

final good.

Xu
n = βudεd

∑
l

λdnlX
d
l (97)

Xd
n = Xn (98)

where Xs
n = Y s

nP
s
n and Xn = YnPn. Differentiating equations 97 and 98, and using the result

from equation 93 which shows growth equalization across countries for stage-specific price index,

we get:

gY un + gPu = gY dl
+ gP d = gYl + gP ∀l (99)

Since this equation has to hold for all l, it has to be true that the growth rates of downstream

output and final output, across all countries are equalized, i.e. gY dl
= gY d and gYl = gY . With

this the right hand side of equation 99 is constant for all countries n, which implies that the

growth rates of upstream output has to be equalized across all countries, i.e. gY un = gY u .

55Note that βuu = 0. The growth rate of final good price index is substituted by the growth rate of downstream
price index as explained in equation 92.
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Combining these observations with equation 91, we have

gY u + gPu = gY d + gP d = gY + gP = gw (100)

Substituting equations 100 and 94, we get:

gY s = −(gcs − gw) + gs/(σs − 1)

Substituting for the first term on the right hand side from equation 96, and representing in

matrix form, we get:

gYs =
(
S + (I−B)−1 BS

)
gs (101)

And since gP = gP d , the growth of final good is simply equal to the growth of downstream

output, gY = gY d .
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C Quantitative Appendix

Table C31: Calibration: Countries in the Foreign Aggregate

Country Trade Share Rank Country Trade Share Rank

United States 0.128 1 South Korea 0.031 6

China 0.102 2 Italy 0.031 7

Germany 0.073 3 Japan 0.031 8

France 0.037 4 Australia 0.028 9

Great Britain 0.034 5 Taiwan 0.017 10

Notes: This table lists the countries included in the rest of the world aggregate for model calibration.

Countries are chosen on the basis of their rank in trade shares with India. Trade share for a country

with India is defined as the share of imports from India and exports to India of that country over

total imports and exports.
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Table C32: Calibration: Industries and Stages of Production

Code Industry Description FD Share Stage

C24 Manufacture of basic metals 0.05 up

C17 Manufacture of paper and paper products 0.16 up

C16 Manufacture of wood and of products of wood and cork 0.17 up

C22 Manufacture of rubber and plastic products 0.19 up

C23 Manufacture of other non-metallic mineral products 0.21 up

C20 Manufacture of chemicals and chemical products 0.22 up

C25 Manufacture of fabricated metal products 0.26 up

C18 Printing and reproduction of recorded media 0.34 up

C26 Manufacture of computer, electronic and optical products 0.47 up

C27 Manufacture of electrical equipment 0 0.51 down

C19 Manufacture of coke and refined petroleum products 0.54 down

C13-C15 Manufacture of textiles, wearing apparel and leather products 0.57 down

C21 Manufacture of basic pharmaceutical products 0.58 down

C28 Manufacture of machinery and equipment n.e.c. 0.60 down

C29 Manufacture of motor vehicles, trailers and semi-trailers 0.61 down

C30 Manufacture of other transport equipment 0.69 down

C31-32 Manufacture of furniture; other manufacturing 0.76 down

C10-12 Manufacture of food products, beverages and tobacco products 0.77 down

Notes: This table lists the set of industries used in the calibration strategy. Industries are as defined in the World Input Output

Database, and the column labeled “Code” represents the corresponding ISIC Rev.4 industry code. FD Share is the share of total

industry output that is directly consumed by households and governments. Industries are categorized as upstream or downstream

based on the share of output that goes into final demand. Higher share implies the industry is more downstream.
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Table C33: Plant Types for Calibration

Plant Type Share

Single-Product 0.69

Multi-Product Single-Stage 0.24

Multi-Product Multi-Stage 0.07

Table C34: Plant Type Transitions for Calibration

year (t+ 1)

Single-Product
Multi-Product Multi-Product

Single-Stage Multi-Stage

ye
ar
t

Single-Product 0.90 0.08 0.02

Multi-Product
0.21 0.71 0.08

Single-Stage

Multi-Product
0.18 0.24 0.58

Multi-Stage

This matrix represents the transition of firm types as categorized by the number of products and

the number of production stages produced from one year to the next, classified for the purpose of

calibration. Each row sums to 1, and each element in a given row represents a share.
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Table C35: Gravity Estimation: Upstream

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) Avg

log(Tariff) -6.76*** -9.99*** -3.18 -5.02*** -12.04*** -6.04*** -16.75*** -4.79** -13.61*** -10.58

(2.38) (2.21) (5.79) (1.84) (2.45) (2.16) (3.72) (1.93) (3.45)

log(Distance) -0.30*** -0.37*** -0.55*** -0.35*** -0.32*** -0.45*** -0.34*** -0.41*** -0.29*** -0.35

(0.05) (0.05) (0.08) (0.03) (0.07) (0.05) (0.07) (0.05) (0.05)

Border -1.71*** -1.87*** -0.70* -1.33*** -1.26*** -1.04*** -0.98*** -0.96*** -0.61*** -1.07

(0.20) (0.17) (0.36) (0.16) (0.20) (0.21) (0.31) (0.19) (0.23)

Language -0.38** -0.16 -0.51 -0.03 -0.14 -0.19 -0.30 -0.00 0.05 -0.12

(0.18) (0.25) (0.31) (0.18) (0.21) (0.20) (0.30) (0.19) (0.23)

Colonizer -1.11*** -0.31 -1.28*** 0.05 -0.38 -0.68** 0.30 -0.76*** -0.60* -0.27

(0.24) (0.29) (0.49) (0.21) (0.33) (0.28) (0.37) (0.23) (0.33)

Legal Origins -0.05 -0.20* -0.00 -0.21** -0.26** -0.21* -0.18 -0.25** -0.44*** -0.26

(0.12) (0.12) (0.22) (0.10) (0.11) (0.12) (0.14) (0.11) (0.12)

Colonial Ties -0.67*** -0.16 -0.48* -0.21 -0.41 -0.52* -0.19 -0.29 0.21 -0.17

(0.19) (0.21) (0.28) (0.22) (0.31) (0.27) (0.29) (0.22) (0.28)

Sector 7 8 9 11 13 14 15 16 17

Observations 1,060 1,069 1,046 1,098 1,098 1,088 1,067 1,055 1,103

Notes: This table shows the gravity estimates from PPML for the sectors that are classified ad Upstream in the WIOD database.

The last column gives the weighted average of the estimates across the sectors with sectoral output weights. Each of the following

variables are coded as 0 if a country pair have a common feature, and 1 if they do not: Border, Language, Colonizer Legal Origins

and Colonial Ties. The sector associated with the sector codes in the last but one row are listed in the appendix. Standard errors

are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table C36: Gravity Estimation: Downstream

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) Avg

log(Tariff) -1.29** -8.91*** -5.44 -30.37*** -15.14*** -10.48*** -15.02*** -6.79*** -18.57*** -9.89

(0.64) (1.42) (4.30) (3.18) (2.87) (2.66) (2.73) (2.02) (2.40)

log(Distance) -0.48*** -0.40*** -0.62*** -0.38*** -0.19*** -0.23*** -0.43*** -0.37*** -0.37*** -0.41

(0.04) (0.05) (0.06) (0.05) (0.06) (0.04) (0.06) (0.06) (0.05)

Border -0.72*** -1.23*** -0.94*** -0.76*** -1.09*** -1.11*** -1.43*** -0.73*** -0.97*** -1.04

(0.16) (0.26) (0.27) (0.27) (0.26) (0.16) (0.19) (0.23) (0.21)

Language -0.58*** -0.51* -0.29 -0.51* 0.32 -0.12 0.23 -0.73** -0.21 -0.25

(0.16) (0.28) (0.34) (0.26) (0.25) (0.16) (0.26) (0.28) (0.24)

Colonizer -0.64*** 0.21 0.98** 0.60* -0.86** -0.40* 0.21 0.80** 0.07 -0.05

(0.20) (0.39) (0.39) (0.36) (0.35) (0.21) (0.34) (0.35) (0.31)

Legal Origin -0.15 -0.08 -0.37** -0.33*** -0.30** -0.14 -0.09 -0.15 -0.17 -0.17

(0.12) (0.13) (0.19) (0.12) (0.13) (0.09) (0.11) (0.15) (0.12)

Colonial Ties -0.28 0.60** 0.00 0.03 -0.64* -0.56*** 0.89*** -0.04 0.05 0.04

(0.22) (0.29) (0.24) (0.34) (0.33) (0.18) (0.29) (0.35) (0.28)

Sector 5 6 10 12 18 19 20 21 22

Observations 1,079 1,097 889 973 1,061 1,104 1,079 1,009 1,098

Notes: This table shows the gravity estimates from PPML for the sectors that are classified ad Downstream in the WIOD database.

The last column gives the weighted average of the estimates across the sectors with sectoral output weights. Each of the following

variables are coded as 0 if a country pair have a common feature, and 1 if they do not: Border, Language, Colonizer Legal Origins

and Colonial Ties. The sector associated with the sector codes in the last but one row are listed in the appendix. Standard errors

are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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