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a b s t r a c t 

Using global patents, citations, inter-sectoral sales, and trade data, we examine the interna- 

tional diffusion of technology through imported inputs. We use citations and sales data to 

characterize knowledge and production input-output tables for individual countries. Using 

these tables, we construct a measure of the flow of knowledge-weighted and production- 

weighted technology embodied in inputs imported from the US. We develop an instru- 

mental variable strategy to establish that increases in embodied technology imports lead 

to increased innovation and knowledge diffusion in sectors within importing countries. Ef- 

fects are substantially larger for knowledge-weighted imports of embodied technology. 
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1. Introduction 

Innovation and R&D activity are concentrated in a relatively small number of advanced economies. Recent work demon- 

strates the quantitative importance of international technology diffusion for the gains from trade and aggregate growth (see, 

for example, Buera and Oberfield, 2020; Cai et al., 2022; Sampson, 2023 ). However, little direct empirical evidence exists on

the significance of specific channels through which ideas spread across borders. In this paper, we examine the diffusion of 

technology across countries and sectors through technology embodied in imports of goods from the US using evidence from 

global patents and citations data. 
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We focus on this channel for three reasons. 1 First, new innovations often manifest themselves as new products or en-

hancements to existing products and many of these new or enhanced products are traded. These product flows potentially 

convey information about the innovations embodied within them to the users of the products. Second, the foundational 

knowledge on which new innovations are based originates from many distinct sectors; these sources vary across sectors and 

need not be related to sectors’ sources of production inputs. Since countries’ patterns of trade depend in part on patterns of

comparative advantage, their imports of technology embodied in trade flows affect innovation in different sectors in those 

countries in different ways. Incorporating variation in sectors’ sources of knowledge and production inputs is necessary to 

assess the impacts of a given amount of technology embodied in a set of trade flows on different sectors. Third, accounting

for technology embodied in traded inputs has important policy implications. The effects of trade policies go beyond the 

well-studied impacts of tariffs on, for example, static intermediate and final goods prices, since they can also affect the flow

of information and technology across countries and sectors. Because new innovations often build on existing knowledge, 

changes in technology flows due to changes in trade policy can have effects on innovation activities not accounted for by

the policy-induced responses of innovation to import competition and market access. 2 

The first contribution of our paper is to estimate the extent to which trade is a channel of international technology dif-

fusion. We do this by investigating the effects of embodied technology imports on innovation and diffusion outcomes. This 

channel underlies many theoretical and quantitative models of international technology spillovers (e.g., Alvarez et al., 2013; 

Buera and Oberfield, 2020; Grossman and Helpman, 1991 ). We start by developing a conceptual framework to guide our 

empirical analysis. In the conceptual framework, firm innovations depend on a combination of R&D investment, domestic 

knowledge spillovers, and international spillovers from the technological frontier. International spillovers depend on embod- 

ied technology imports—the import-weighted stock of frontier knowledge—and the relevance of cross-sector knowledge to 

the innovating sector. 

We use patents data as our primary measure of innovation in our analysis. Patents document innovations that result 

in new products, new components of existing products, or new methods of producing products. The second contribution 

of our paper is to construct a novel dataset on country-sector-level innovations and trade. We leverage the Google Patents 

database to construct detailed patent outcomes for a wide range of countries. In particular, the database allows us to con-

struct measures of patenting based on the locations of innovators and measures of cross-country citation flows. We also use 

import data from the Centre d’Études Prospectives et d’Informations Internationales (CEPII) database of international trade 

flows and cross-sector sales from the Bureau of Economic Analysis (BEA) in our analysis. Finally, we map data into consistent

sector definitions using a series of concordances. 

The third contribution of our paper is to construct empirical measures of embodied technology imports. As a first step, 

we construct measures of the cross-sector relevance of knowledge. We use cross-sector citations and sales data to con- 

struct knowledge and production input-output (IO) tables as a measure of the relevance of cross-sector knowledge. Within 

a country, we construct the knowledge IO table using the share of citations from each sectors’ patents to each other sectors’

patents. We similarly construct the production IO table using the share of sales between sectors. Unlike with patents, data 

to construct the production IO table is only available for the US, which we take as the frontier economy in our analysis.

Since knowledge and production IO linkages could, in principle, be similar for many sectors, we demonstrate that the US 

knowledge and production IO tables are distinct. 3 In particular, we document that knowledge and production IO linkages 

are not highly correlated on average, that knowledge IO linkages are less concentrated than production IO linkages for the 

average sector, that the sectors that are key economy-wide sources of inputs differ between the knowledge and production 

IO tables, and that the sources of knowledge inputs are more persistent than the sources of production inputs. We also find

that knowledge IO linkages are less persistent on average in sectors in non-US countries than in the US. 

Along with US imports, we use the IO tables to develop measures of embodied technology imports. We develop two 

measures based on the knowledge and production IO tables that we refer to as the knowledge-weighted and production- 

weighted embodied technology imports. Specifically, we aggregate US import-weighted knowledge stocks using Cobb- 

Douglas weights from the knowledge and production IO tables. We exclude the own-sector component in the construction 

of embodied technology as imports and innovation activity in a country-sector can be correlated due to domestic demand 

shocks or import competition effects. The knowledge-weighted measure is directly related to our mechanism of interest 

since it relies on knowledge flows across sectors. The production-weighted measure is also included as potentially impor- 

tant transfers of technology can occur through production interactions. A key outcome of our analysis is then to measure 

the relative strength of spillovers from embodied technology weighted by knowledge and production linkages. 

Our main empirical specification involves regressing measures of innovation and diffusion outcomes on knowledge- 

weighted and production-weighted embodied technology imports. The main innovation outcomes are patents, forward ci- 

tations, and forward citations per patent while our main diffusion outcomes are US backward citations, US backward cita- 
1 Other channels include technology licensing, foreign direct investment, knowledge transfers within multinational firms, immigration, trade in services, 

and cross-border scientific or technical collaborations (see Keller, 2004; 2010; 2021 , for surveys of empirical evidence of different channels). 
2 Shu and Steinwender (2019) survey the empirical literature examining evidence of the effects of import competition and market access on innovation. 

Existing work that, like us, focuses on effects that are present in patents data includes Bloom et al. (2016) , Bombardini et al. (2017) , and Autor et al. 

(2020) for import competition, and Coelli et al. (2022) and Aghion et al. (2022) for market access. 
3 Though not the focus of our paper, we are among the first to provide a descriptive comparison of the knowledge and production IO tables of an 

economy. Concurrent work in Hötte (2023) and Liu and Ma (2023) construct similar knowledge and production IO tables and compare them. 
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tions per patent, and the US backward citation share. 4 We also include controls for the US knowledge stock, each country’s

own knowledge stock—constructed using country-specific knowledge IO linkages—and own-sector imports. Additionally, our 

long panel of data, spanning from 1995 through 2015, allows us to control for high-dimensional fixed effects. We include 

country-sector fixed effects to account for differences in the propensity to patent and innovate across countries and sectors, 

country-year fixed effects to account for changes in patenting markets and development within countries over time, as well 

as aggregate sector-year fixed effects to control for structural changes in sectoral technologies over time. 

A potential concern with estimating the effects of the trade channel of technology diffusion on domestic innovation 

is that domestic shocks to expected future profits or shocks to R&D productivity can lead to R&D activity in a country-

sector and the demand for production and knowledge intermediate inputs being correlated. 5 To address this concern, we 

use an instrumental variable (IV) strategy to isolate the effects of embodied technology imports on innovation and diffusion 

outcomes. For each country, we construct a cluster of related countries that fall into the same quintiles of the distributions of

the total trade (exports plus imports) to GDP ratio and GDP per capita. We then construct the instrument for each country

using US exports to all countries outside of the country’s cluster. The instrument isolates US supply shocks by excluding 

countries that are likely to experience correlated demand shocks. 6 

Using our IV strategy, we find that a 1% increase in the knowledge-weighted embodied technology imports increases 

patenting by around 0.67%. In comparison, a 1% increase in the production-weighted embodied technology imports increases 

patenting by 0.003%. To quantify the size of the of the estimated coefficients, we show that a one standard deviation in-

crease of residualized knowledge-weighted and production-weighted embodied technology imports accounts for 13.2% and 

1.8% standard deviations of residualized patenting, respectively. The considerably larger estimate of the knowledge-weighted 

measure is consistent with our expectation that the knowledge IO table better approximates the relevance of knowledge 

across sectors. 

For diffusion outcomes, we find that a 1% increase in embodied technology imports increases US backward citations by 

a similar proportion for the knowledge-weighted measure and 0.005% for the production-weighted measure. Knowledge- 

weighted and production-weighted embodied technology imports account respectively for 8.8% and 1.3% of the standard 

deviation of residualized US backward citations. Despite the elasticity for US backward citations being larger than that for 

patenting, we do not find consistent evidence that either measure of embodied technology imports increases the rate of US 

backward citations (US backward citations per patent) or the share of US backward citations (out of total backward citations 

in a country-sector-year). We expect that foreign backward citations are noisier measures than patenting outcomes and find 

that the rate of US backward citations becomes positive and statistically significant in some of our robustness exercises. 

Our estimated coefficients are robust to a variety of alternative specifications. We find similar coefficient estimates for 

different lags of the regressors. We consider alternative instruments constructed using a traditional leave-one-out approach 

and constructed using all other countries within a cluster (as opposed to all countries outside of the cluster as in our

baseline). We find economically more significant results when we restrict the sample to the 40 countries with the most 

patenting activity, consistent with the idea that patenting activity is better measured in these countries or more represen- 

tative of innovation activity. Finally, we find similar results using alternative constructions of the main variables, alternative 

innovation and diffusion outcomes, or other controls. 

Related Literature . Our work contributes to the empirical literature on the channels of international technology diffusion 

(most recently surveyed by Keller, 2021 ), particularly papers that examine the trade channel. This includes work pioneered 

by Coe and Helpman (1995) and the within-sector analysis of R&D diffusion across borders through both trade and non- 

trade channels in Acharya and Keller (2009) . Our focus on direct evidence for diffusion using citations in new patents is

closely related to MacGarvie (2006) and concurrent work by Aghion et al. (2021) , both of which use French firm-level data

on the extensive margins of trade participation to show that citations to firms’ patents increase in foreign markets with 

which firms interact through trade. We add to this body of evidence by showing with a sector-level analysis that embodied

technology imports are a source of technology diffusion. 

In doing so, our paper provides evidence for the international technology diffusion that underlies recent growth models 

featuring trade, diffusion, and innovation (e.g., Buera and Oberfield, 2020; Cai et al., 2022; Sampson, 2023 ). Most closely

related is Cai et al. (2022) who examine inter-sectoral and cross-country technology diffusion. In their model, technology 

diffuses exogenously within and across borders based on parameters estimated using citation linkages from the US Patent 

and Trademark Office. We show that this diffusion across countries depends on endogenous trade flows between countries. 

The empirical approach we take to evaluate the effects of diffusion of technology across countries is complementary 

to recent work using patents data to measure international technology diffusion through inter-sectoral networks, including 

Fons-Rosen et al. (2019) , Berkes et al. (2022) , and Liu and Ma (2023) . 7 To the best of our knowledge, ours is the first paper

to include inter-sectoral knowledge IO measures based on these data to estimate the trade channel of technology diffusion. 
4 Forward citations are measured over a five-year period to mitigate truncation issues. US backward citations are measured as the total citations of US 

patents by all patents applied for in a given country-sector-year. 
5 Data on R&D spending at the level of industry disaggregation used in our analysis is unavailable for most countries in our sample. 
6 The commonly-used leave-one-out instrument can be viewed as a case of this strategy in which each cluster includes only a single country. Our results 

are robust to using this instrument instead. 
7 We also build on work that documents and examines the effects of inter-sectoral patterns of knowledge flows in single-country settings, such as 

Acemoglu et al. (2016) and Cai and Li (2019) . 
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Fons-Rosen et al. (2019) use patents-based sector-pair measures of technological similarity adapted from Bloom et al. (2013) , 

which are distinct from our citations-based IO measures, to investigate the foreign direct investment channel of technology 

diffusion. Berkes et al. (2022) show that there has been a large increase in international knowledge spillovers since the 

1990s as measured by cross-country patent citations and that the innovations induced by this increase in diffusion lead to 

an increase in the growth rates of sectoral output per worker and total factor productivity. Closely related is the empirical

exercise in Liu and Ma (2023) that documents that global spillovers from past patenting activity that depend on the network

of patent citations across countries and sectors lead to increases in innovation. 

Our paper is also related to the branch of the trade literature examining the effects of changes in access to intermediate

production inputs due to trade policy on many dimensions of firm performance. This line of research includes work that 

shows that increased openness to trade of production inputs leads to higher productivity ( Amiti and Konings, 2007; Topalova

and Khandelwal, 2011 ), increases in product scope and new product introduction ( Goldberg et al., 2010 ), and reductions in

marginal costs ( De Loecker et al., 2016 ). 8 Though our analysis is conducted at the sector level rather than the firm level, our

results speak directly to the mechanisms through which trade in inputs leads to improvements in performance and suggest 

that technology diffusion and increases in the generation of new patented technology follow from increases in embodied 

technology imports. 

Outline . The remainder of this paper proceeds as follows. Section 2 describes the data used in our analysis.

Section 3 presents the conceptual framework used to guide our empirical analysis. Section 4 describes the constructions of 

the knowledge and production IO tables. Section 5 describes our empirical strategy and baseline specifications. Section 6 dis- 

cusses the estimation results and robustness checks. Section 7 concludes. 

2. Data 

In this section, we provide an overview of the data used for the main analysis. We use data on patent applications and

citations, inter-sectoral purchases of inputs by US sectors, and bilateral product-level trade flows from the US into other 

countries. These data come from a variety of sources and are provided in a range of distinct classifications that compel

us to use concordance tables to translate all the data into a consistent classification system. We briefly describe the data

and concordances we use below and leave the remaining details of the data collection and variable construction to Online 

Appendix B. 

Patents and citations data . We draw on data collected by Google Patents from a wide range of patent offices around the

world. For each distinct patent family, which comprises the set of patent applications for a given innovation filed at one or

more patent offices, we identify the earliest date a patent was applied for at any patent office and treat this as the filing date

for the patent family. Each application in a patent family contains the following information that we use in our analysis:

the technology categories to which the innovation is relevant, which are represented by International Patent Classification 

(IPC) codes; the set of inventors of the patent application and their countries of residence; and citations to other patents

listed in the patent application. 9 Throughout our analysis, we focus on patent applications rather than patent grants as 

grant dates are unavailable in the Google Patents database for patents applied for at many national patent offices, whereas 

application dates are available. 10 Furthermore, as we examine technology diffusion and its effects, patent application events 

better reflect the timing of diffusion than do patent grant events. 

We calculate the number of initial applications of patent families filed in each year between 1995 and 2015 in each

country and technology subclass (a 4-character IPC code) and refer to these as patent counts. 11 Patents are assigned to

countries using fractional counts by computing the share of inventors of each patent from each country. 12 For a subset

of patent families, applications are submitted to the three patent offices that throughout our sample period are of global 

significance, including the European Patent Office (EPO), the Japan Patent Office (JPO), and the United States Patent and 

Trademark Office (USPTO). We count the number of such triadic patent applications. 13 

In addition to counts of patent families, we use information on citations between patents. To measure the quality of 

patents filed in each year and each country and technology subclass, we compute the number of citations received by these

patents across citing patents applied for each year from 1995 to 2021 in all countries and technology classes and define

these as the forward citations of the patents in each year. Backward citations data are used for two purposes. First, as

described in Section 4.1 , we use backward citations to measure knowledge linkages between sectors. Second, for patents 

filed each year and in each non-US country and technology subclass, we calculate the number of backward citations to US

patents, domestic patents, and other foreign patents filed in each technology subclass in each year. 
8 See also the other relevant works surveyed in Shu and Steinwender (2019) . 
9 We focus our analysis on those patent families with non-missing data for each of these three sets of information. Online Appendix B explains how we 

select information on these attributes from among the patent applications in a family. 
10 For instance, there are no grant dates available for patents filed at the Israel Patent Office. 
11 For families with multiple IPC codes, we count these patents once for each technology subclass. 
12 Using information on the countries of the inventors rather than the patent office of the initial application of a patent family allows us to account for 

innovations developed in one country for which patent protection is first sought in another country. The sample used in our baseline analysis includes data 

from 82 countries. 
13 We also include patents applied for at the JPO, the USPTO, and at the patent offices of France, Germany, and the United Kingdom. This definition of 

triadic patent families is consistent with the methodology described by Dernis and Khan (2004) . 
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Inter-sectoral input purchases . To measure production input-output relationships, we employ the Bureau of Economic Anal- 

ysis (BEA) Supplementary Use Tables. These tables are available at five-year intervals and provide the value of purchases by 

input sector made by US output sectors based on the most up-to-date US industrial classification in use at the time. We

use tables that span from 1992 to 2007. Sector classifications are based on US Standard Industrial Classification (SIC) codes 

for the 1992 Use table, while in more recent vintages they are based on the North American Industry Classification System

(NAICS). We describe how we convert the data based on the various SIC and NAICS classifications into a consistent classifi-

cation in Online Appendix B. The BEA Use tables not only cover a long period of time, they are available at a high level of

disaggregation compared to alternative sources of inter-sectoral sales data. Moreover, using US data enables us to examine 

how sectors in importing countries are affected by the technology embodied in imports of production inputs from the US 

based on the patterns of how those inputs are used in the US. 

Bilateral trade data . Import data from CEPII’s Base pour L’Analyse du Commerce International (BACI) database provide the 

value of imports of different goods from the US into each country. Our analysis uses annual data from 1995 to 2015. Import

values are denominated in current US dollars that we convert to constant 2010 US dollars using CPI deflators taken from

the OECD. Goods are classified using 1992 Harmonized System (HS) codes at the 6-digit level of disaggregation. 

Concordances between classifications . Because the raw data underlying our analysis are categorized using different clas- 

sification systems, we employ multiple concordances between these classifications to provide a coherent framework for 

analysis. We choose the most disaggregated sectors in the 2002 BEA data as our endpoint classification system. This clas- 

sification, in which sectors are defined similarly to those in the 2002 US 6-digit NAICS classification, allows us to retain a

high degree of disaggregation in our analysis while avoiding the potential problems that would arise in a crosswalk of our

inter-sectoral input purchase data from the BEA sectors into the more numerous HS goods categories. 14 

We implement a concordance methodology that enables us to first construct measures of technology embodied in goods 

at the same level of disaggregation as the imports data and second to measure the flow of technology embodied in goods

imported from different US sectors. The data downloaded from the Google Patents database are classified into different IPC 

version 8 4-character technology subclasses. 

For the first stage, we convert the data on patent counts, forward citations, stocks of knowledge (the measurement of 

which we describe in Section 5.2 ), and backward citations between technology subclasses into categories of goods. 15 To do

this, we use the concordance developed by Lybbert and Zolas (2014) between technology subclasses and 2002 6-digit HS 

codes and then crosswalk this data to 1992 6-digit HS codes. This first concordance is based on an algorithm that uses

keywords extracted from the 2002 HS code descriptions that are matched with the text of patent titles and abstracts to

construct probabilistic links between the IPC technology subclasses of the matched patents and the HS goods categories. 16 

In the second stage, a series of crosswalks between 1992 HS codes and our endpoint 2002 BEA classification that provide

us with weights used to map goods into sectors is overlaid on the knowledge stocks, patents, citations, and trade data. The

crosswalks used are the following: first from 1992 6-digit HS codes to 1987 4-digit Standard Industrial Classification (SIC) 

codes, second from 1987 4-digit SIC codes to 2002 6-digit NAICS codes, and third from these NAICS codes into the 2002 BEA

classification. In applying the first two of these crosswalks, mappings from 1992 HS codes to 2002 NAICS codes use weights

derived from the earliest available breakdown of employment by 2002 6-digit NAICS sector from County Business Patterns 

(CBP) data. 17 Similar procedures that leverage CBP-based employment weights are used to crosswalk the data underlying 

the different vintages of the BEA Use tables into the 2002 BEA sector categories. 

3. Conceptual framework 

Before turning to our empirical analysis, we describe a stylized conceptual framework to guide our analysis. Time is 

discrete and indexed by t . The economy is populated by a unit mass of identical firms in each sector of each country.

Because firms are identical, we refer to them by their country-sector-year (i, h, t) to simplify notation. To be consistent with

our data structure and the empirical approach described in Section 5 , we define three levels of sectoral aggregation, where

we denote n as a summary sector (the highest aggregation), h as a sector (the focus of our analysis), and p as a subsector

(or product). We also define P 

h as the set of subsectors p in sector h and n (h ) as the summary sector n that contains sector

h . 18 
14 There are no publicly available sources of data on input-output relationships across goods categorized by disaggregated HS codes. The analysis sample 

used in our baseline specifications includes 292 sectors. 
15 See Online Appendix B for the procedure we use to calculate citations between technology categories. 
16 Related papers that use the concordances introduced by Lybbert and Zolas (2014) and extended to other classifications in Goldschlag et al. (2020) in- 

clude Kukharskyy (2020) and Hötte (2023) , among others. Kukharskyy (2020) uses the concordances with citations data to construct cross-sector knowledge 

linkages, but applies these linkages to investigating how the applicability of multinational parent firms’ knowledge capital for a foreign affiliate affects the 

ownership stake (the degree of integration) of the parent firm in its affiliate. Hötte (2023) also constructs inter-sectoral knowledge linkages and combines 

them with production linkages to explore how different network characteristics of the knowledge and production IO tables are associated with the level 

and growth of US sector-level output and patenting. 
17 The details of this procedure and links to the sources of all concordances used in this paper are provided in Online Appendix B. 
18 P h can be thought of as the set of products that are associated with a sector h . Our raw trade data is collected at the product level and we first convert 

our patents data to this level of aggregation. We introduce the summary sector n (h ) since we use fixed effects at this level of aggregation in our empirical 

application. These details are further explained in Section 5 . 
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Firms in each country produce innovations by investing in R&D, denoted by R h 
i,t 

, to earn future profits πh 
i,t+1 

per innova-

tion in the following period. 19 Expected profits in period t + 1 can be written as E t [ πh 
i,t+1 

] = π̄i,t × π̄n (h ) 
t × π̄h 

i 
× e 

u h 
i,t where

u h 
i,t 

is an independent and identically distributed random variable that is known to firms in period t . We use a broader

sector aggregation for profits in π̄n (h ) 
t to be consistent with our empirical specification. A firm (i, h, t) that invests R h 

i,t 
into

R&D produces innovations in the next period at rate 

X 

h 
i,t+1 = 

(
R 

h 
i,t 

ψ 

h 
i,t 

) 1 
ζ (

Z h i,t S 
h 
i,t 

)1 − 1 
ζ , 

where ψ 

h 
i,t 

governs the relative cost of R&D across country-sector-years, Z h 
i,t 

is the domestic stock of relevant knowledge 

for sector h , and S h 
i,t 

is a spillover from the frontier of knowledge (described below). The R&D cost parameter is equal to

ψ 

h 
i,t 

= ψ i,t × ψ 

n (h ) 
t × ψ 

h 
i 

× e 
v h 

i,t , where v h 
i,t 

is an independent and identically distributed random variable that, like u h 
i,t 

, is

known to firms in period t . The variable X h 
i,t 

can be interpreted as the average quality of innovations or the quality-adjusted

rate of innovations. 

Domestic knowledge Z h 
i,t 

depends on the stocks of knowledge in different sectors of the domestic economy and the 

relevance of those stocks of knowledge as inputs into innovation for the innovating sector h . Domestic knowledge is given

by 

Z h i,t = 

∏ 

l 

G Z 

( ∑ 

p∈P l 
K 

p 
i,t 

) κ l,h 
i,t 

, 

where G Z (·) is a monotonic function that dictates the strength of spillovers from domestic knowledge in an input sector,

which we set to G Z (x ) = (1 + x ) ηZ . 20 The other variables are the knowledge stock K 

p 
i,t 

of country-subsector-year (i, p, t) and

the relevance of knowledge from sector l for producing innovations in country-sector-year (i, h, t) , denoted by κ l,h 
i,t 

. 

Spillovers from the frontier economy depend on the stocks of knowledge embodied in traded goods coming from the 

frontier economy. The sectoral flow of knowledge coming into sector h from other sectors l depends on a Cobb-Douglas 

aggregator given by 

S h i,t = 

∏ 

l 

G S 

( ∑ 

p∈P l 
(m 

p 
F,i,t 

× K 

p 
F,t 

) 

) γ l,h 
F,t 

, 

where G S (·) is a monotonic function that dictates the strength of spillovers from the embodied frontier technology that we

set to G S (x ) = (1 + x ) ηS . The value of γ l,h 
F,t 

captures the usefulness of knowledge from sector l to sector h in the frontier

economy in period t . We allow for this parameter to change over time to capture dynamics in knowledge linkages over

time. We also assume that the relevance of frontier knowledge in sector l for innovating in sector h is determined in the

frontier economy, whereas the relevance of domestic knowledge for innovating is specific to the domestic economy. This 

could be thought of as reflecting how different types of goods result in knowledge spillovers to different countries. 

The spillover of ideas from the frontier economy depend on two components: K 

p 
F,t 

is the frontier stock of knowledge in

subsector p and m 

p 
F,i,t 

= M 

p 
F,i,t 

/Y 
h (p) 
i,t 

is the imports from the frontier economy to the domestic economy M 

p 
F,i,t 

divided by the

subsector output Y h 
i,t 

. Unlike with domestic knowledge, we scale frontier knowledge by the relative abundance of frontier 

goods in the domestic economy, as measured by m 

p 
F,i,t 

. Intuitively, embodied technology can be thought of as capturing the

probability that a domestic innovator encounters a frontier good by chance multiplied by the probability that the innovator 

realizes a new innovation given the encounter (as in, for example, Bloom et al., 2013; Buera and Oberfield, 2020; Lucas

and Moll, 2014; Perla and Tonetti, 2014 ). Whenever γ l,h 
F,t 

> 0 and ηS > 0 , increased domestic abundance of frontier goods in

subsectors p ∈ P 

l (higher m 

p 
F,i,t 

) and increased technology embodied in those goods (higher K 

p 
F,t 

) both increase innovation in

sector h . 

The problem of a firm is to maximize net expected profits by choosing R&D expenditure. Equivalently, the firm’s problem 

can be written as choosing the innovation rate 

X 

h 
i,t+1 = arg max 

X 
X π h 

i,t+1 − ψ 

h 
i,t X 

ζ
(
Z h i,t S 

h 
i,t 

)1 −ζ
, 
19 We simplify the environment by assuming that firms only earn profits in the next period, but the model would be equivalent if firms earned a stream 

of profits proportional to expected profits. 
20 This specification of G Z (x ) is consistent with our treatment of zeros in the empirical analysis. 
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C  
where the second term is the R&D cost paid by the firm for a given innovation rate. Solving the problem implies that firms

innovate at rate 

X 

h 
i,t+1 = 

˜ ζ S h i,t × Z h i,t ×
[

π̄i,t 

ψ i,t 

× π̄n (h ) 
t 

ψ 

n (h ) 
t 

× π̄ h 
i 

ψ 

h 
i 

× e u 
h 
i,t 

−v h 
i,t 

] 1 
ζ−1 

, (1) 

where ˜ ζ = ζ−1 / (ζ−1) . Taking the log of Eq. (1) and grouping variables implies 

ln X 

h 
i,t+1 = ln S h i,t + ln Z h i,t + f i,t + f n (h ) 

t + f h i + εh 
i,t , 

where f i,t = ( ln π̄i,t − ln ψ i,t ) / (ζ − 1) , f n (h ) 
t = ( ln π̄n (h ) 

t − ln ψ 

n (h ) 
t ) / (ζ − 1) , f h 

i 
= ( ln π̄h 

i 
− ln ψ 

h 
i 
) / (ζ − 1) , and εh 

i,t 
= (u h 

i,t 
−

v h 
i,t 

) / (ζ − 1) . Substituting our functional forms for the domestic and frontier spillovers, G S and G Z , we get: 

ln X 

h 
i,t+1 = ηS ln EmbT ech 

h 
i,t + ηZ ln OwnT ech 

h 
i,t + f i,t + f n (h ) 

t + f h i + εh 
i,t , (2) 

where 

EmbT ech 

h 
i,t = 

∏ 

l 

(
1 + 

∑ 

p∈P l (m 

p 
F,i,t 

× K 

p 
F,t 

) 
)γ l,h 

F,t 

OwnT ech 

h 
i,t = 

∏ 

l 

(
1 + 

∑ 

p∈P l K 

p 
i,t 

)κ l,h 
i,t 

. 

The expression in Eq. (2) provides the foundation for our empirical strategy. The parameters, ηS and ηZ , are the elasticities

of the spillover functions G S and G Z respectively. The rest of the paper focuses on identifying these elasticity parameters 

which modulate the impact of frontier and domestic knowledge spillovers on innovation outcomes in a country-sector. In 

the next sections, we construct variables that correspond to the values of EmbT ech and OwnT ech , which stand for “embodied

technology imports” and “own-country technology”, respectively. 

The conceptual framework highlights the relationship between embodied technology imports and innovation outcomes. 

The assumptions on the nature of expected profits and investment costs are relatively flexible and capture many macroe- 

conomic differences across countries and sectors that may otherwise be of concern in estimating the relationship. This 

would include, for example, country-specific business cycles, sector-specific trends, such as digitalization, and time-invariant 

differences in the comparative advantage of countries across different sectors. However, difficulties may arise if there are 

persistent country-sector-specific shocks that drive both an increase in imports and innovation. To deal with these issues, 

we separate the own-sector and cross-sector effects, since we expect these issues to be most severe within sectors, and we

develop an IV strategy. These remedies are discussed in detail in Section 5 . 

4. Inter-sectoral technology linkages 

We use the conceptual framework as a roadmap for the empirical analysis. We start by developing measures of the 

inter-sectoral relevance of technology inputs. For κ l,h 
i,t 

, which parameterizes domestic knowledge spillovers in country-sector- 

year (i, h, t) from sector l, we base this on patent citation relationships between those sectors. Spillovers from technology

embodied in imports from the frontier may depend on both the inter-sectoral knowledge flows captured by these citations 

as well as patterns of inter-sectoral input purchases, which we measure using production relationships between sectors, 

so we allow γ l,h 
F,t 

to depend on both types of relationships. We also use this section to highlight key differences between

the knowledge and production IO tables that are constructed using these relationships to shed light on how we separately 

identify the effects of imported embodied technology that operate through these two channels. 

4.1. Construction of knowledge and production IO tables 

Our analysis estimates the effects of embodied technology imports on patenting outcomes. We focus on two candidates to 

describe the relevance of knowledge in each sector for generating innovations in other sectors. The first is knowledge input- 

output linkages , which describe the relative flow of patent citations across sectors. This measure is tightly linked with our

focus on innovation outcomes since patent citations represent a direct report of flows of technology. The second is production 

input-output linkages , which describe the relative flow of intermediate inputs across sectors. While less directly linked to 

innovation outcomes, the use of intermediate inputs captures another channel through which technology can diffuse within 

and between sectors. We collect these measures of technology relevance into separate knowledge and production IO tables 

and document patterns of inter-sectoral technology flows. 

We denote the number of citations of country-sector-year ( j, l, s ) patents by country-sector-year (i, h, t) patents as

 it es l,h 
j,i,s,t 

. This variable captures the reported flow of knowledge from ( j, l, s ) to (i, h, t) . 21 The set of sectors is denoted

by H and the set of countries by I . 
21 Similarly to the allocation of patents to countries, we weight each citation by the product of the cited and citing patents’ fractional country weights 

based on their respective inventor country compositions. In this notation, each year refers to the filing year of the relevant patents. 
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Knowledge IO linkages, which measure the relevance of knowledge produced in each input (cited) sector for each output 

(citing) sector, are constructed using the backward citations made by patents. More specifically, let κ l,h 
i,t 

denote the knowl- 

edge IO linkage between sectors l and h in country i in year t . We allow for this relationship to change over time and base

the relationship in year t on patents filed between years t − τ̄ and t for some chosen lag τ̄ . The knowledge IO linkage is

given by 

κ l,h 
i,t 

= 

∑ 

j∈I 
∑ τ̄

τ=0 

∑ t−τ
s =0 Cites l,h 

j,i,s,t−τ∑ 

k ∈H 

∑ 

j∈I 
∑ τ̄

τ=0 

∑ t−τ
s =0 Cites k,h 

j,i,s,t−τ

. (3) 

In our analysis, we set the maximum lag used in the construction of the knowledge IO linkages to a ten-year window

( ̄τ = 9 ) to allow for slow moving technological transitions. 22 The knowledge IO linkages capture the country-sector (i, h )

citations made by patents filed over a ten-year window to all prior sector l patents from all countries as a share of total

citations made by country-sector (i, h ) patents filed over the ten-year window. 

Similarly, we measure production IO linkages as the importance of goods produced in each input sector for each output 

sector. Because the availability of highly disaggregated data on inter-sectoral sales is comparatively limited, we focus on 

within-country transactions in the US. We define ρ l,h 
i,t 

, the analog to κ l,h 
i,t 

for the production IO table, as 

ρ l,h 
i,t 

= 

Sales 
l,h 
j,i,t ∑ 

k ∈H 

Sales 
k,h 
i,t 

, (4) 

where Sales l,h i,t is the total value of sector l goods sold to country-sector-year (i, h, t) . Production IO linkages measure, for

year t , the sales from sector l to sector h as a share of the total sales from all sectors to sector h . 

The linkages are based on US data from the BEA Use tables as described in Section 2 . Since the BEA Use tables are

only available at five-year intervals, we use the production IO linkages constructed from the data in each table for multiple

years. For consistency with the measurement of production IO linkages, we also use only knowledge IO linkages from the 

same years for which there is a BEA Use table. In addition, to allow sectoral variation in exposure to technology inputs to

be determined in advance of exposure in a given year, we use IO linkages that are lagged relative to the years in which

exposure is measured. This lag in exposure variation is applied to both knowledge and production IO linkages. 23 

4.2. Description of knowledge and production IO tables 

The construction of the knowledge and production IO tables relies on different data. However, there is little point in 

examining the effects of embodied technology in knowledge and production inputs separately if the two IO tables are closely 

related to one another. We now turn to illustrating several stylized observations regarding the two IO tables to demonstrate 

that they reflect distinct measures of the inter-sectoral relevance of technology inputs. 

Both knowledge and production IO linkages take on values between zero and one. Values closer to one indicate stronger 

relationships whereas values closer to zero indicate weaker relationships. In Fig. 1 , we depict the knowledge and production

IO tables for the US economy in 2002, with values of κ l,h 
US, 2002 

represented in the left panel and ρ l,h 
US, 2002 

in the right panel. In

each table, rows correspond to input sector l and columns correspond to output sector h . The color of each cell depends on

the size of the IO linkage between the input and output sectors. We plot only those IO linkages for which the input sector

accounts for at least 1% of the inputs used by the output sector. We also sort sectors in the IO tables based on their relative

importance as a source of production inputs across output sectors to visually highlight the differences in the IO tables. 

An immediate insight from Fig. 1 is that there are clear differences in the patterns of knowledge and production IO

linkages for many sectors. We formalize and build on this visual intuition through five descriptive observations that highlight 

the differences between the knowledge and production IO tables. 24 

Observation 1. The sources of knowledge and production inputs are not highly correlated for the average sector in the US. 

Observation 2. The sources of production inputs are more highly concentrated than the sources of knowledge inputs for 

the average sector in the US. 

Observation 3. The key input-supplying sectors are distinct in the US knowledge and production IO tables. 

Observation 4. For the average sector in the US, the sources of knowledge inputs are more highly correlated across time

than the sources of production inputs. 
22 For example, Berkes et al. (2022) and Ayerst (2022) find that ICT sectors have become more important sources of innovations over the period of our 

analysis, highlighting the need for dynamic IO linkages. Baslandze (2018) finds an overall increase in the interconnectedness of sectors over this period. 
23 To be more precise, we use κ l,h 

i, 1992 
and ρ l,h 

i, 1992 
for exposure measured between 1995 and 20 0 0, κ l,h 

i, 1997 
and ρ l,h 

i, 1997 
when we examine exposure between 

2001 and 2005, κ l,h 
i, 2002 

and ρ l,h 
i, 2002 

for years between 2006 and 2010, and κ l,h 
i, 2007 

and ρ l,h 
i, 2007 

between 2011 and 2015. 
24 One can also clearly see that own-sector IO linkages along the diagonal are, in general, large relative to off-diagonal IO linkages in both the knowl- 

edge and production IO tables. We discuss the importance of own-sector versus cross-sector (off-diagonal) linkages both for the presentation of these 

observations in Online Appendix A and for our empirical results in Section 6 . 
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Fig. 1. Input-Output Tables. Note : This figure displays the knowledge and production IO tables where each point represents an IO linkage. The row position 

of each output sector and column position of each input sector are held constant across both IO tables to facilitate visual comparisons across the tables. 

Sectors are sorted based on their economy-wide importance as suppliers of production inputs by summing up the production IO linkages of each input 

sector over off-diagonal output sectors. The plots include the 292 2002 BEA sectors in agriculture, forestry, fishing and hunting, manufacturing, and mining 

with a non-zero sum of knowledge IO linkages across input sectors. Knowledge (production) IO linkages are defined in Eq. (3) ( Eq. (4) ). Knowledge IO 

linkages are based on backward citations of patents assigned to the US filed between 1993–2002 while production IO linkages are based on the 2002 BEA 

Use table. Both plots only display IO linkages that account for at least 1% of the inputs used by an output sector while all other IO linkages are visually 

suppressed. 

 

 

 

 

 

 

 

 

 

 

 

Observation 5. The sources of knowledge inputs are less persistent on average in non-US country-sectors than in US sectors. 

In part, this reflects a convergence on average between each non-US country-sector and the same sector in the US. 

We relegate the elaboration of these observations to Online Appendix A as a comparison of the IO tables is tangential to

our main objectives. Nevertheless, a key implication of the observations is that the knowledge and production IO structures 

of the economy capture different relationships between sectors and, consequently, may capture different potential sources of 

technology spillovers. Furthermore, although US knowledge IO linkages tend to be highly persistent, there is a considerable 

degree of variation over time in US production IO linkages (as well as in non-US knowledge IO linkages). In our baseline

analysis we explore the diffusion of knowledge through imports of embodied technology weighted using both dynamic 

knowledge IO linkages and production IO linkages. 

The approach used to measure knowledge IO linkages in this paper shares many similarities with the method developed 

concurrently in Liu and Ma (2023) . Like them, we construct knowledge IO tables for many countries across a long period of

time using data from Google Patents and provide a descriptive analysis of the IO tables. Although both papers use different

sources of data to construct production IO tables, both document a low correlation between the knowledge and production 

IO tables across all IO linkages in the tables. The analysis in this paper goes one step further to show that this low correlation

prevails across most output sectors and at different points in time. 25 Although Liu and Ma (2023) describe their global

knowledge IO table as being stable across time and across countries, our more disaggregated analysis reveals that there are 

many non-US country-sectors for which the sources of knowledge inputs change substantially across our sample period. 

Similarly, while Liu and Ma (2023) find that the knowledge IO tables in most top patenting countries are highly correlated

with the US knowledge IO table when using patents from all years, our analysis suggests that there is considerable variation

across country-sectors and across time in the correlation of US and non-US knowledge IO linkages. 

5. Empirical specification 

We now describe the main empirical specification of our analysis and the construction of key variables. Our main re- 

gressions involve regressing innovation outcomes on measures of embodied technology imports. We start by specifying our 

outcome variables. We then use the knowledge and production IO tables to develop the explanatory variables. Finally, we 

outline the empirical analog of Eq. (2) and an instrumental variable (IV) approach that we use to identify the effects of

spillovers from embodied technology imports. 

The US as the technological frontier . Throughout the analysis, we focus on the effects of imports from the US, which

we consider to be the technology frontier. We make this assumption for two main reasons. First, the US is both the most
25 Although the comparable regression-based analysis in both papers is undertaken at the level of output sectors and not countries, Liu and Ma (2023) do 

not document patterns of variation across output sectors and across time in the knowledge IO tables other than for domestic citation shares. 
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Table 1 

Description of Outcome Variables. 

Variable Description 

Patents h 
i,t 

The count of patent applications using the allocation rules described in Section 2 . 

F wdC it es h 
i,t 

= ∑ 

l∈H 
∑ 

j∈I 
∑ t+5 

s = t C it es h,l 
i, j,t,s 

Measures total citation-weighted patenting activity. The measure only includes citations received in the five years 

following the calendar year of the patent’s application to mitigate truncation issues that would arise in later periods 

of the sample if citations received in all years were used. 

F wdRate h 
i,t 

= 

FwdC it es 
h 
i,t 

Patents h i,t 
Measures the average quality of patent applications as the citations received by patents divided by total patents. 

USBackC it es h 
i,t 

= ∑ 

l � = h 
∑ t 

s =0 C it es l,h US,i,s,t 

The number of cross-sector citations to US patents. This measure excludes own-sector backward citations to be 

consistent with the focus on cross-sector imports of embodied technology (discussed below). 

USBackRate h 
i,t 

= 

USBackC it es 
h 
i,t 

Patents h 
i,t 

Measures the rate at which patents cite cross-sector US patents. In this regard, the measure captures the intensive 

margin of technology diffusion. 

USBackShare h 
i,t 

= 

USBackC it es h 
i,t ∑ 

l � = h 
∑ 

j � = i 
∑ t 

s =0 C it es l,h i, j,s,t 

The share of cross-sector citations to US patents in total cross-sector citations to foreign patents. The measure is 

informative of the extent to which knowledge inputs are substituted towards US knowledge in response to larger 

embodied technology flows from the US. 

Note : Variables are defined for a country-sector-year (i, h, t) . For F wdRate , USBackRate , and USBackShare , we exclude (i, h, t) observations with a value of 

zero in the denominator. 

Table 2 

Summary Statistics. 

A: Outcome Variables B: Technology Variables 

N Median Mean SD N Median Mean SD 

Patents h 
i,t 

478880 0.083 0.786 1.384 EmbTechK h 
i,t 

478880 16.090 15.788 3.119 

F wdC it es h 
i,t 

478880 0.171 1.203 1.858 EmbTechP h 
i,t 

478880 13.129 12.604 4.088 

F wdRate h 
i,t 

368950 1.394 1.405 0.745 EmbTechDiag h 
i,t 

478880 14.174 13.425 5.397 

USBackC it es h 
i,t 

478880 0.403 1.585 2.151 OwnTech h 
i,t 

478880 2.471 3.160 3.003 

USBackRate h 
i,t 

368950 2.198 2.129 0.988 USTech h t 478880 10.988 10.827 1.200 

USBackShare h 
i,t 

364724 0.498 0.486 0.194 USTechDiag h t 478880 9.435 8.998 2.859 

Note : Outcome variables are defined in Table 1 and technology variables are defined in Eqs. (5) to (10) . All outcome variables are averaged over the three- 

year window t to t + 2 . All statistics for outcome variables are calculated on the log of one plus the variable except for the statistics for USBackShare . All 

statistics for the technology variables are calculated on the log of the variable. 

 

 

 

 

 

 

 

 

innovative country and the largest originator of cross-country citations over this time period (see Berkes et al., 2022 , for

evidence), which reflects the characteristics of the frontier economy. Second, setting the frontier economy to the US allows 

us to be consistent with our data measurement, since the US has detailed data available for multiple years to construct both

the production and knowledge IO tables described in Section 4 that are necessary for our analysis. 

Sample Description . The unit of observation in our analysis is a country-sector-year. We limit our final panel of data to

the years 1995 to 2015. Years prior to 1995 lack trade data for many countries and including later years would give rise to

truncation issues for patents and forward citations, which are the main data used for our innovation outcome variables. We 

also limit the set of countries in our final sample based on their population, triadic patenting activity, and export-to-GDP and

import-to-GDP ratios. We do this to avoid including countries where patenting outcomes may be too noisy, or countries that 

act as intermediaries in the global trade network. Online Appendix B provides the details of our sample selection procedure. 

5.1. Outcome variables 

Table 1 summarizes, defines, and describes the main outcomes variables. The conceptual framework illustrates the re- 

lationship between frontier knowledge spillovers and innovation outcomes. The focus is on the rate of innovation as the 

main outcome variable, which we measure in the data using both the rate of patenting ( Patents ) and the citation-weighted

rate of patenting ( F wdCites ). We also use the average quality of patents, measured by the number of forward citations per

patent ( F wdRate ), to examine both the intensive and extensive margin effects of frontier knowledge spillovers. 

We also examine evidence on the extent to which trade of embodied technology is a source of technology diffusion 

and leads to higher flows of knowledge from the US. Specifically, we use the backward citation information underlying 

the knowledge IO table as a measure of cross-country knowledge flows. We construct three outcome variables measur- 

ing cross-sector backward citations to US patents ( U SBackCites ), the per-patent rate of backward citations to US patents 

( U SBackRate ), and the share of backward citations to US patents in total cross-sector backward citations to foreign patents 

( U S BackS hare ). 

In our baseline specification, we measure outcome variables using the average of the variables in the three-year win- 

dow between year t and t + 2 . Panel A of Table 2 presents summary statistics of the main outcome variables. F wdRate

and USBackRate are calculated only for observations with non-zero patent counts, while USBackShare is calculated only for 

observations with non-zero cross-sector citations to foreign patents. The summary statistics show that the distribution of 
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Patents and F wdCites are highly skewed with the median country-sector-year having values close to zero. The distribution 

of outcomes based on backward citations are similarly skewed. 

5.2. Embodied technology imports and other controls 

Our main variable of interest is the frontier knowledge spillovers through embodied technology imports ( EmbT ech h 
i,t 

in 

the conceptual framework). Before turning to our main variables of interest, we discuss the construction of knowledge stocks 

K 

p 
i,t 

, which are used in the construction of the main variables. 

We measure the technological content of a subsector’s goods using patents data as 

K 

p 
i,t 

= (1 − δ) K 

p 
i,t−1 

+ F wdCites 
p 
i,t , 

where F wdC it es 
p 
i,t 

is the five-year forward citations in country-subsector-year (i, p, t) and δ is the depreciation rate of knowl- 

edge that we set to 5% to be consistent with commonly used values. For each country and subsector, we initialize the stock

of knowledge in 1940 with the value K 

p 
i, 1940 

= F wdC it es 
p 
i, 1940 

/δ. The initial value has little influence on the knowledge stocks

used in the period of our analysis because of the long time period. 

Embodied technology imports . We set the linkages γ in the conceptual framework to be a combination of knowledge κ
and production ρ IO linkages, γ l,h 

F,t 
= ακ l,h 

F,t 
+ (1 − α) ρ l,h 

F,t 
. We do not impose structure on whether knowledge flows between

sectors are better captured by the knowledge or production IO linkages. For each country-sector-year (i, h, t) , our measure

of knowledge-weighted embodied technology imports is given by 

EmbT echK 

h 
i,t = 

∏ 

l � = h 

(
1 + 

∑ 

p∈P l 
(
w 

l (p) K 

p 
US,t 

M 

p 
US,i,t 

))κ l,h 
US,t 

(5) 

and production-weighted embodied technology imports are given by 

EmbT echP h i,t = 

∏ 

l � = h 

(
1 + 

∑ 

p∈P l 
(
w 

l (p) K 

p 
US,t 

M 

p 
US,i,t 

))ρ l,h 
US,t 

, (6) 

where w 

l (p) is the concordance weight discussed in Section 2 . 

The amount of imported embodied technology depends on the flow of knowledge into country i from every sector l � = h

in the United States. This flow is increasing in the volume of imports and the stock of knowledge in sector l. Countries

that spend more on sector l goods from the United States have a higher flow of knowledge into them from that sector. For

example, a larger volume of imports could reflect more varieties of a sector’s goods being imported. Our measure reflects the

idea that as a country imports more, ideas upon which domestic innovators can build become more abundant and readily 

available. The effect of a flow of knowledge from a given sector l is weighted by the tendency of that sector’s knowledge to 

be used in sector h in the US. 

An important distinction from the conceptual framework is that we construct the measures of embodied technology from 

the levels of US imports ( M 

p 
US,i,t 

), rather than trade scaled by output ( m 

p 
US,i,t 

= M 

p 
US,i,t 

/Y 
p 

i,t 
), since output data is unavailable

at the level of aggregation we examine. A potential issue with this construction is that higher imports could simply reflect

that the importing country has a larger population or economy. 26 We include granular fixed effects as a best attempt to

deal with this issue. 27 

We omit the own-sector component in the embodied technology spillover terms as within-sector imports and innovation 

outcomes can potentially be related to each other for multiple reasons. Within-sector demand shocks can lead to countries 

importing more foreign products to satiate demand while at the same time investing more in innovation activities in the 

sector due to increased returns. Moreover, own-sector imports can also affect innovation outcomes in a country through 

import competition effects, since firms may invest more in innovation in order to escape foreign competition. Finally, R&D 

productivity shocks and profitability shocks to a country-sector can lead to imports and innovations by the country-sector to 

be correlated. Given these concerns, we include a control for the own-sector component of embodied technology spillovers 

constructed as 

EmbT echDiag h i,t = 1 + 

∑ 

p∈P h w 

h (p) K 

p 
US,t 

M 

p 
US,i,t 

. (7) 

We do not scale the knowledge inputs by the IO weights, κ l,l 
US,t 

or ρ l,l 
US,t 

, since we expect that this variable also captures

factors not directly related to the effects of technology diffusion, such as import competition. 28 
26 It is also worth noting that this is not an issue with the US technology stocks K p 
US,t 

since they are common to all importers and capture the abundance 

of technology embodied within imports, meaning their levels are important for the interpretation of our results. 
27 An alternative would be to use US import shares, i.e., US imports to country i over all imports to country i . This construction leads to misleading 

conclusions because trends in trade—e.g., trade increases for most country sectors over this period—lead to declining US import shares for most countries. 
28 The evidence on the effect of import competition on innovation activity is mixed. For example, Bloom et al. (2016) find that increased trade with China 

between 20 0 0 and 20 05 led to an increase in patenting activity in European firms that were more exposed to that competition (which was also the case 

for increased exposure to trade from other low-wage countries). In contrast, Autor et al. (2020) find that import competition due to increased trade with 

China decreased patenting activity in publicly listed US firms and technology classes more exposed to that competition. In contrast, they find that changes 

in import penetration of high-wage countries like the US had no effect on patenting. Nevertheless, we include this variable to mitigate concerns that the 

estimated effects of imported embodied knowledge pick up these import competition effects. 
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Fig. 2. Residual Variation in Measures of Embodied Technology Imports. Note : This figure plots residuals of ln (EmbTechK) and ln (EmbTechP) , defined in 

Eq. (5) and (6) , and the line of best fit from the regression of the former measure on the latter. Residuals are computed by regressing each measure on the 

set of fixed effects included in the baseline specifications discussed in Section 5.3 . 

 

 

 

 

 

 

 

Estimating the separate effects of knowledge- and production-weighted imports of embodied technology requires that 

there is sufficient variation across observations in our sample in these two measures. To assess this, we regress the logs of

both EmbT echK and EmbT echP on the set of fixed effects included in our baseline specifications. Fig. 2 plots the fitted resid-

uals from these regressions and a line of best fit from a regression of one set of residuals on the other. The figure highlights

that there is considerable orthogonal variation in the two residualized variables. 

Other variables . We also include measures of the country-sector domestic and US stocks of knowledge to control for 

alternative channels of diffusion. We construct the measure of the domestic knowledge stock as 

OwnT ech 

h 
i,t = 

∏ 

l 

(
1 + 

∑ 

p∈P l w 

l (p) K 

p 
i,t 

)κ l,h 
i,t 

. (8) 

Higher values of OwnT ech reflect higher stocks of country-sector-year (i, l, t) knowledge that tend to be cited by sector

h . We use the domestic knowledge IO linkages κ l,h 
i,t 

in the construction because this is the best measure of the relevance of 

sector l knowledge for producing innovations in country-sector-year (i, h, t) . 29 

Analogous to EmbT echK and EmbT echDiag, we also control for US knowledge stocks relevant to a sector constructed as: 

UST ech 

h 
t = 

∏ 

l � = h 

(
1 + 

∑ 

p∈P l w 

l (p) K 

p 
US,t 

)κ l,h 
US,t 

(9) 

UST echDiag h t = 1 + 

∑ 

p∈P h w 

h (p) K 

p 
US,t 

. (10) 

These controls serve two purposes. First, they control for the effect of the growth in frontier knowledge on each sector’s

innovation activity that is common to all countries irrespective of each country’s trade integration with the frontier economy. 

Since our choice of instrumental variables (described in Section 5.4 ) precludes us from including strict sector-year-level fixed 

effects, these controls help in capturing part of sector-year trends relevant for knowledge production that are common to all 

countries. Second, we expect that knowledge diffuses across countries through mechanisms other than trade, and controlling 

for UST ech captures some of these aspects of knowledge diffusion. Diffusion can occur through direct technology licensing, 

FDI, immigration, and other channels ( Keller, 2004; 2010; 2021 ). Including UST ech allows us to separately identify the effect

of traded embodied technology from broader technology diffusion across countries. Panel B of Table 2 provides summary 

statistics for all the technology-related variables discussed in this section. 

5.3. Estimation equation 

We now present the empirical counterpart of Eq. (2) in terms of our constructed variables that serves as our baseline

specification: 

ln (1 + Outcome h i,t ) = θ1 ln EmbT echK 

h 
i,t−1 + θ2 ln EmbT echP 

h 
i,t−1 + θ3 ln OwnT ech 

h 
i,t−1 

+ θ4 ln EmbT echDiag 
h 
i,t−1 + θ5 ln UST ech 

h 
t−1 + θ6 ln UST echDiag 

h 
t−1 
29 We do not have highly detailed and dynamic measures of production IO linkages for most countries, which prevents us from constructing a similar 

measure with ρ l,h 
i,t 

. 
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+ V 

h 
i,t−1 β + f i,t + f n (h ) 

t + f h i + εh 
i,t , (11) 

where V h 
i,t 

is a vector of controls that includes own-sector imports from the world and exports to the world and f i,t , f n (h ) 
t 

and f h 
i 

are country-year, (summary) sector-year, and country-sector fixed effects. In the baseline regressions, we lag all 

our regressors as well as average outcomes over a three-year window from t to t + 2 to reduce noise and to allow for

a more gradual diffusion of knowledge. With the exception of USBackShare , we also transform the outcome variable as 

ln (1 + Outcome h 
i,t 

) to keep observations that have zero-valued innovation/diffusion outcomes. 

In all regressions, we allow for the possibility that the residuals are correlated across years within a country-sector pair 

(due to serial correlation) and across countries in each year within a sector (since much of the variation in our variables

of interest is at the sector-year level). To do so, we estimate multi-way clustered standard errors at the country-sector and

sector-year levels ( Cameron et al., 2011 ). 

The coefficients of interest are related to model parameters as θ1 = ηS α, θ2 = ηS (1 − α) , and θ3 = ηZ , where α is the con-

tribution of knowledge linkages towards cross-sectoral spillovers of embodied technology imports. The estimates of θ1 and 

θ2 should be positive since our hypothesis is that spillovers from embodied technology imports should improve innovation 

outcomes. We also expect that the estimates for θ1 will in general be larger than for θ2 since the knowledge weights reflect

a more direct measure of the relevance of embodied technology imports for patenting. Similarly, the estimate of θ3 should 

be positive for the rate of innovating ( Patents and F wdCites ) but may be ambiguous for the quality of patents if higher

knowledge stocks correspond to higher rates of low-quality innovations. For diffusion outcomes, the estimate of θ3 should 

be positive for overall US citations and near zero for the other outcomes. 

5.4. Endogeneity concerns 

The fixed effects in Eq. (11) control for time-invariant characteristics of country-sector pairs, factors that vary at the 

country level over time, and sector-year shocks that are common to sectors within a summary sector. Despite the inclusion 

of these fixed effects, there remain potential endogeneity concerns with our regressors of interest. 

One possibility is that variation across country-sector-years in the amount of relevant technology inputs embodied in a 

country’s imports in prior years could reflect demand shocks for those inputs that also directly affect patenting outcomes. 

For example, shocks to expected profits, captured by u h 
i,t 

in the conceptual framework, 30 would both increase R&D invest- 

ment but also the imports of intermediate inputs used in the production of goods in (i, h, t) . 31 Similarly, shocks to domestic

R&D productivity, captured by v h 
i,t 

in the conceptual framework, can give rise to endogeneity concerns. If domestic R&D 

and embodied technology in cross-sector imports are substitutes in the production of new innovations, then shocks to the 

domestic R&D productivity will reduce demand for embodied technology imports and ordinary least squares estimates of 

the effects of embodied technology imports would suffer from a negative bias. On the other hand, if imported embodied 

technology and R&D are complements in the production of new innovations, then there would be a positive bias affecting 

the OLS estimates. If these shocks were serially correlated, there would be a spurious correlation between innovation output 

and imports of embodied technology in past years arising from the shocks. Since there is no data available on R&D expen-

ditures at the level of sectoral disaggregation used in our analysis, we cannot control for these innovation inputs which may

cause an omitted variable bias to affect our estimates. 

To address these concerns, we use an instrumental variable strategy that focuses on variation in US imports that is 

a function of supply shocks to US exports. Specifically, we instrument each regressor that includes US imports with an 

instrument that constructs the variable using US exports to all countries outside of a country-specific cluster (discussed 

below). For our main regressors, we construct the instrumental variables as 

IV EmbT echK 

h 
i,t = 

∏ 

l � = h 

(
1 + 

∑ 

p∈P l (w 

l (p) K 

p 
US,t 

X 

p 
US,i,t 

) 
)κ l,h 

US,t 

, (12) 

and 

IV EmbT echP 
h 
i,t = 

∏ 

l � = h 

(
1 + 

∑ 

p∈P l (w 

l (p) K 

p 
US,t 

X 

p 
US,i,t 

) 
)ρ l,h 

US,t 

, (13) 

where X 
p 

US,i,t 
= 

∑ 

j / ∈ C i M 

p 
US, j,t 

and C i is a cluster of countries with similar characteristics to country i . We construct the cluster

C i as the countries that fall into both the same quintiles of the distribution of GDP-per-capita (in 1995) and the total trade

(imports plus exports) to GDP ratio as country i . 32 We include the first variable to capture similarities in technological

development across countries and the second variable to capture similarities in trade patterns across countries. 

Our IV strategy isolates trade flows to the domestic country that stem from supply shocks in the US. A standard leave-

one-out instrument would exclude the domestic economy to discount changes in trade that result from domestic demand 
30 For example, demand shocks or policy driven shocks in a sector can change expected future profits in that sector. 
31 We do not explicitly model demand for production inputs from different sectors and instead implicitly subsume them into the expected profit function. 
32 We use the entire sample of countries that we have data for, not just those included in the final sample. 
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shocks. We extend this intuition by not only excluding the domestic economy but also countries that share similar charac- 

teristics and, consequently, may face demand shocks that are correlated with those facing the domestic country. 

Although the instrumental variables correct for demand shocks to imports that vary at the country-sector-year level, we 

would be remiss not to mention the principal endogeneity concern that may still be present. If there are demand shocks

to imports at the sector-year level for sectors within a BEA summary sector that are common across all countries, our

instruments may reflect these demand shocks rather than US export supply shocks. Since the instruments are constructed 

at the sector-year level, we are unable to include sector-year fixed effects at the same level of disaggregation and so cannot

preclude that these common demand shocks affect our estimates. 33 

6. Results 

We now discuss the results from estimating the effects of knowledge-weighted and production-weighted embodied tech- 

nology imports on the innovation and diffusion outcomes. We report the estimates using the baseline specifications de- 

scribed in Eq. (11) and use the empirical model to quantify the magnitudes of the results. We close this section by discussing

the robustness of the results to alternative specifications. 

6.1. Baseline results 

Table 3 reports the results for the innovation and diffusion outcomes. We interpret the innovation results as correspond- 

ing to X h 
i,t 

in the context of the conceptual framework. All regressions include country-sector, summary sector-year, and 

country-year fixed effects as described in the model and standard errors are clustered at the country-sector and sector- 

year levels. The IV estimates are larger than the OLS estimates (reported in Online Appendix D) for knowledge-weighted 

embodied technology imports EmbT echK and are similar for production-weighted embodied technology imports EmbT echP . 

The innovation outcomes, reported in columns (1) to (3), point to a positive impact from knowledge-weighted and 

production-weighted embodied technology imports EmbT echK and EmbT echP on the innovation rate, as measured by Patents 

and F wdC it es . The effect appears to be primarily through the extensive margin (i.e., more patenting) rather than the inten-

sive margin (i.e., more citations). The elasticity of innovation outcomes with respect to shocks to EmbT echP is substan-

tially lower than for EmbT echK, by multiple orders of magnitude, for both Patents and F wdCites , suggesting that technology

spillovers through trade operate primarily through knowledge linkages. We show later that the quantitative comparison 

holds after accounting for the relative variation in EmbT echK and EmbT echP . 

The diffusion outcomes, reported in columns (4) to (6), point to positive, albeit more mixed, impacts of knowledge- 

weighted and production-weighted technology imports EmbT echK and EmbT echP . The coefficient estimates for USBackC it es 

are positive for both E mbT echK and E mbT echP . To some extent, this follows from the previous result since more frequent

patenting implies more backward citations to the US, all else equal. 

For USBackRate and USBackShare the point estimates are positive, in line with our expectations, but the estimates are 

statistically insignificant. The results suggest that while knowledge-weighted and production-weighted embodied technol- 

ogy imports improve innovation outcomes, knowledge may diffuse through channels that do not result in citations. That 

said, the estimates of EmbT echK for USBackRate are more mixed than when looking at alternative specifications (see Online 

Appendix D). This is consistent with the point estimate of USBackC it es relative to that of Patents , with the former being

almost twice as large as the latter in Table 3 . We expect that for both USBackRate and USBackShare the estimated coefficient

is biased downwards since our measure of backward citations is noisier than for Patents and F wdCites . Specifically, our mea-

sure includes citations to any previous US patent, many of which may include innovations that are already well-understood 

in the domestic economy. Additionally, many countries may not require or enforce that domestic patents cite foreign patents 

making backward citations a noisy measure of diffusion. 34 Another possibility is that innovators learn both about US patents 

but also other foreign innovations through US patents. For example, an innovator may learn about a French innovation that 

is built on by a US product and cite that patent instead. In this regard, we think of both USBackRate and USBackShare as

being relatively strict measures of diffusion. 

The coefficient for EmbT echDiag is near zero reflecting that this variable captures several channels with potentially op- 

posing impacts on innovation, such as, for example, competition from imports and knowledge spillovers. We do not focus 

on the spillovers through this channel due to the aforementioned difficulties with their interpretation. The coefficients for 

OwnT ech are positive for Patents and F wdCites suggesting that the stock of domestic knowledge relevant to a country-sector 

contributes positively to its innovation rate. 

The coefficient on UST ech , which measures relevant upstream knowledge produced by the US, is negative in our baseline

results. While this measure captures broader technology diffusion from the US to other countries, it is also correlated with 

our measure of EmbT echK. A change in UST ech will also result in a change in EmbT echK since both measures have the same
33 While this may be the case, because our sample includes many countries at a wide range of stages of development and with different patterns of trade 

with the US, it is unlikely that there are sector-year demand shocks common to all the countries in our sample. 
34 Our choice to allocate patents based on the location of the innovator would add noise to both measures. For example, a citation to a patent with 50% 

US innovators and 50% French innovators would not increase USBackShare even if local innovators learned about the patent through interactions with the 

US innovators US employer. 
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Table 3 

Main Results. 

(1) (2) (3) (4) (5) (6) 

Patents F wdC it es F wdRate USBackC it es USBackRate USBackShare 

ln EmbTechK 0.666 ∗∗∗ 0.545 ∗∗∗ 0.052 1.023 ∗∗∗ 0.076 0.002 

(0.048) (0.054) (0.048) (0.082) (0.055) (0.011) 

ln EmbTechP 0.003 ∗∗ 0.002 ∗ -0.001 0.005 ∗ 0.000 0.000 

(0.001) (0.001) (0.001) (0.002) (0.002) (0.000) 

ln EmbTechDiag 0.019 0.001 -0.013 0.023 0.012 0.004 

(0.012) (0.012) (0.012) (0.021) (0.015) (0.003) 

ln OwnTech 0.005 ∗∗ 0.006 ∗∗ -0.047 ∗∗∗ 0.019 ∗∗∗ -0.051 ∗∗∗ -0.005 ∗∗∗

(0.002) (0.002) (0.004) (0.004) (0.005) (0.001) 

ln USTech -0.761 ∗∗∗ -0.596 ∗∗∗ -0.086 -1.130 ∗∗∗ -0.128 -0.007 

(0.064) (0.072) (0.070) (0.110) (0.079) (0.017) 

ln USTechDiag 0.097 ∗∗∗ 0.165 ∗∗∗ -0.003 0.261 ∗∗∗ 0.109 ∗∗∗ 0.009 

(0.015) (0.016) (0.022) (0.026) (0.026) (0.006) 

Observations 478,880 478,880 368,950 478,880 368,950 364,724 

F-Stat EmbTechK 412.6 412.6 609.6 412.6 609.6 686.7 

F-Stat EmbTechP 12806.4 12806.4 17535.9 12806.4 17535.9 18557.1 

F-Stat EmbTechDiag 322.1 322.1 349.5 322.1 349.5 350.0 

Note : Each column reports IV estimates of the regression specification in Eq. (11) . All dependent variables, which are defined in Table 1 , are first averaged 

over the three-year window t to t + 2 and then transformed using ln (1 + Out come ) , where Out come is the variable in the column title. Explanatory variables 

are defined in Eqs. (5) to (10) . The instrumental variable approach is described in Section 5.4 . Other controls include one-year lags of the log of total exports 

from the country-sector to other countries and the log of total own-sector imports from other countries. All regressions include country-sector, (summary) 

sector-year, and country-year fixed effects. Standard errors clustered at both the country-sector and sector-year levels are in parentheses. 

Table 4 

Quantitative Significance. 

Coefficient Estimate Relative Implied RSD (%) 

Outcome RSDO EmbTechK EmbTechP EmbTechK EmbTechP

(RSDE = 0.037) (RSDE = 1.197) 

Patents 0.185 0.666 0.003 13.2 1.8 

F wdC it es 0.308 0.545 0.002 6.5 0.9 

F wdRate 0.478 0.059 -0.001 0.5 -0.3 

USBackC it es 0.427 1.023 0.005 8.8 1.3 

USBackRate 0.616 0.084 0.000 0.5 0.1 

USBackShare 0.139 0.002 0.000 0.0 0.2 

Note : RSDO is calculated as the standard deviation of the outcome variable after controlling for the fixed effects used in the baseline specification, Eq. (11) . 

RSDE is calculated as the standard deviation of the explanatory variable after controlling for the other regressors and fixed effects used in that specification. 

For each of EmbTechK and EmbTechP, defined in Eqs. (5) and (6) , relative implied RSD refers to the product of the coefficient estimate and the ratio of the 

RSDE to the RSDO. Outcome variables are defined in Table 1 . Coefficient estimates are taken from Table 3 . 

 

 

 

 

 

 

underlying IO linkages and US technology levels by construction. Therefore, the negative estimate cannot be interpreted 

as the effect of UST ech holding all else fixed. In order to understand the effect of UST ech , we first residualize EmbT echK

by regressing it on UST ech and taking the residual. We then run our baseline regressions by replacing EmbT echK with its

residualized version and keeping all other regressors the same. By the Frisch-Waugh-Lowell theorem, the estimates on all 

regressors except UST ech will remain the same. The new estimate on UST ech is positive, and can now be interpreted as the

effect of UST ec h that is orthogonal to the trade-weighted US technology measure EmbT ech . The details of this exercise are

presented in Online Appendix C.1. 

6.2. Quantitative significance 

Our conceptual framework is used to derive Eq. (2) , where the innovation rate X h 
i,t+1 

depends on embodied technology

imports EmbT ech through an elasticity ηS and the IO linkages γ l,h 
F,t 

, which equals the knowledge κ l,h 
US,t 

and production ρ l,h 
US,t 

weights for the US scaled by α and 1 − α, respectively. Taking the estimates for Pat ents and F wdC it es implies that ηS α ∈
[0 . 54 , 0 . 67] and ηS (1 − α) = [0 . 0 02 , 0 . 0 03] . 

To further understand the quantitative magnitude of the results, Table 4 compares the relative magnitude of the variation 

in the outcomes and the implied variation of outcomes attributable to the model variables. We focus on the residualized 

standard deviation of the explanatory variables, RSDE, which is calculated as the standard deviation of the variable after re- 

moving the estimated effects of all other regressors and fixed effects. The residual variation in the outcome variables, RSDO, 

is the standard deviation of the outcome variable in question after removing the estimated effects of the fixed effects. We

do this to remove both variable trends as well as cross-country and cross-summary-sector variation in the variables. These 

differences are important for both the outcomes (e.g., increases in patenting over time) and embodied technology imports 

(e.g., increases in trade over time). However, these trends are not important for understanding the economic significance of 
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Fig. 3. Falsification Test Using Randomized Trade Flows. Note : This figure displays histograms of the coefficients θ r 
1 , θ

r 
2 , and θ r 

4 from the regression specified 

in Eq. (14) for 100 draws of randomized trade flows. The dependent variable in each regression is Patents . For each histogram, the dashed line indicates 

the mean of the distribution while the solid line represents the corresponding coefficient of interest from the baseline regression specified in Eq. (11) that 

is reported in Table 3 . 

 

 

 

 

 

 

 

 

 

 

the coefficient estimates. 35 We estimate the effect of the RSDE of the explanatory variables implied by the model and scale

them by the RSDO of the outcome variables. 

The table shows that EmbT echK explains around 13% of the residualized variation in Patents , 6.5% of the variation in

F wdC it es , and around 8.8% for USBackC it es . Consistent with the earlier summary statistics, the table also shows that there

is more residualized variation in EmbT echP , which increases its relative quantitative importance, but this gap is not large

enough to offset the differences in coefficient estimates found in Table 3 . That is, the overall impact of production-weighted

embodied technology imports remains marginal compared with knowledge-weighted embodied technology imports. 

6.3. The role of trade flows in technology diffusion 

As discussed above, we do not expect technology to diffuse across borders only through trade linkages. We now consider 

a falsification exercise to help understand the role trade plays in this diffusion process. A first step towards identifying the

role of trade, separate from broader diffusion channels, is by controlling for sector-relevant upstream US technology, UST ech ,

as in our baseline specification. Our baseline results suggest that trade plays an important role in the form of diffusing

embodied technology even after controlling for the same upstream technology that is not augmented by trade flows. 

To further address this concern, we conduct a falsification test by randomizing the trade flows data used in the construc- 

tion of our embodied technology variables. Specifically, we take the true imports from the US data for all countries that the

data is available for, and randomize their allocation across years, countries, and sub sectors. 36 We construct the random- 

ized counterparts of the embodied technology variables, which we label as E mbT echK(r) , E mbT eckP (r) , and E mbT echDiag(r)

where r stands for the r th randomization of trade flows. We then re-estimate our baseline specification using the random- 
ized variables for 100 draws of randomized variables: 

35 For example, the inability of the empirical model to explain a secular trend in patenting over time is not informative to understanding the importance 

of embodied technology imports. 
36 See Online Appendix C.2 for details of the randomization procedure. 
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ln (1 + Outcome h i,t ) = θ r 
1 ln EmbT echK 

h 
i,t−1 (r) + θ r 

2 ln EmbT echP 
h 
i,t−1 (r) + θ r 

3 ln OwnT ech 

h 
i,t−1 

+ θ r 
4 ln EmbT echDiag 

h 
i,t−1 (r) + θ r 

5 ln UST ech 

h 
t−1 + θ r 

6 ln UST echDiag 
h 
t−1 

+ V 

h 
i,t−1 β

r + f r i,t + f rn (h ) 
t + f rh 

i + εh 
i,t . (14) 

Fig. 3 shows the distribution of estimates θ r 
1 , θ

r 
2 , and θ r 

4 from the regression specification in Eq. (14) for Patents as the

outcome variable. The mean of the randomized model coefficient estimates is plotted as a dashed line and the baseline

estimates are plotted as a solid line. The falsification test confirms that the trade weights used in the EmbT echK measure

are important, with the baseline estimate (0.6 6 6) being eight times higher than the mean of the coefficients from the

randomized data (0.084). However the baseline estimate on EmbT echP and its counterpart from the randomized data are 

relatively smaller and close to each other (0.003 and 0.005). This could indicate that diffusion of embodied technology 

through production linkages might not be a robust feature of the data. Finally, the coefficients on the own-sector embodied 

technology, EmbT echDiag, from the randomized data (mean of 0.001) are also an order of magnitude smaller compared 

to the larger, but statistically insignificant, baseline estimate (0.019). We conclude that the randomized data is unable to 

replicate the coefficient estimates for knowledge-weighted embodied technology imports, highlighting the importance of 

trade. 37 

6.4. Robustness checks and additional results 

In Online Appendix D we demonstrate the robustness of the main results to alternative specifications and controls as well 

as present additional related results. The results are quantitatively similar when alternative lag structures are used instead 

of the baseline specification. Our baseline results construct EmbT echK and EmbT echP using upstream linkages. We show that 

the results hold when the corresponding variables constructed with downstream linkages are included. The results become 

stronger when the country sample is restricted to the top 40 countries based on patenting, consistent with our view that

patenting activity measures are noisier in countries that patent less. The results hold using alternative IV strategies, including 

the traditional leave-one-out IV. The results hold using an alternative transformation of the outcome variables that avoids 

the log of one plus the outcome variable transformation. Finally, the results hold for alternative outcomes, based on triadic 

patents, and constructions of knowledge stocks. 

7. Conclusion 

Innovation activities are highly concentrated in a small number of countries, but new technology eventually diffuses to 

other countries. A potentially important channel through which technology diffuses across borders is international trade of 

goods, since importers can learn about the technology embodied in those goods. This paper assesses the extent to which 

knowledge and production inputs in traded goods contribute to the diffusion of technology and to the amount and quality 

of innovations developed in importing country-sector pairs. 

To do this, we construct knowledge and production IO tables using data on inter-sectoral patent citations and sales. We 

combine these measures with data on sector-level trade flows between countries to construct measures of the knowledge- 

weighted and production-weighted technology imports. We show that increases in both measures of embodied technology 

lead to higher rates of innovation in an importing country-sector pair. 

Our results point to important directions for future research, including towards better understanding the mechanisms 

underlying the trade channel of technology diffusion. For example, since knowledge linkages are a more important source 

of diffusion than production linkages and the sources of knowledge linkages are distinct from production linkages, diffusion 

through the trade of goods may not primarily occur between firm relationships that underpin our sector-level import data. 

Instead, spillovers may primarily be to other firms in importing countries. Future work using firm-level data can investigate 

the presence of these spillovers through knowledge IO linkages. The estimated elasticities in this paper could also be used 

to discipline a quantitative model to evaluate the aggregate growth and welfare implications of knowledge diffusion through 

trade and the effects of trade policy on innovation. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmoneco.2023. 

05.002 . 
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